Solveeit Logo

Question

Question: Equations of the diagonals of a rectangle are \(y+8x-17=0\) and \(y-8x+7=0\). If the area of the rec...

Equations of the diagonals of a rectangle are y+8x17=0y+8x-17=0 and y8x+7=0y-8x+7=0. If the area of the rectangle is 8 sq. units, then the equation of the sides of the rectangle is/are
A) x = 1
B) x + y = 1
C) y = 9
D) x – 2y = 3

Explanation

Solution

Hint: Find equation of bisectors of diagonals of the rectangle. Find angle between both the lines (diagonals) by using relation tanθ=m1m21+m1m2\tan \theta =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|where m1&m2{{m}_{1}}\And {{m}_{2}} are slopes of lines.

Here equations of both the diagonals of rectangle are
y+8x17=0y+8x-17=0............................(1)
y8x+7=0y-8x+7=0...........................(2)
We have to determine the sides of the rectangle if the area of the rectangle is 8. So, let us draw rectangle ABCD with bisectors of diagonals as below;

As, by the symmetry DPM=CPM&CPN=BPN\angle DPM=CPM\And \angle CPN=\angle BPN and area of all four triangles
ΔPCB=ΔPBA=ΔPAD=ΔDPC\Delta PCB=\Delta PBA=\Delta PAD=\Delta DPCall will be equal.
We can prove the above relation as
 area of ΔPCD=12×PM×CD=12×12KM×CD\text{ area of }\Delta PCD=\dfrac{1}{2}\times PM\times CD=\dfrac{1}{2}\times \dfrac{1}{2}KM\times CD
Where KM = 2PM & KM = BC
Hence,  area of ΔPCD=14BC.CD\text{ area of }\Delta PCD=\dfrac{1}{4}BC.CD
Similarly, the area of all four triangles will be 14BC.CD\dfrac{1}{4}BC.CD.
Therefore area of ΔDPC=14.area of rectangle\Delta DPC=\dfrac{1}{4}.area\text{ }of\text{ }rectangle
As, we have area of rectangle as 8;
So, Area of ΔDPC=2\Delta DPC=2
Let us suppose DPM=MPC=θ\angle DPM=\angle MPC=\theta and CP=CP='\ell '.
Hence, from ΔMPC\Delta MPC, we can write
sinθ=MCPC or MC=sinθ and cosθ=MPCP or MP=cosθ \begin{aligned} & \sin \theta =\dfrac{MC}{PC}\text{ or }MC=\ell \sin \theta \\\ & \text{and }\cos \theta =\dfrac{MP}{CP}\text{ or }MP=\ell \cos \theta \\\ \end{aligned}
Therefore,
 area of ΔPCD=12×CD×MP =12×2MC×MP=sinθ.cosθ =2sinθcosθ \begin{aligned} & \text{ area of }\Delta PCD=\dfrac{1}{2}\times CD\times MP \\\ & =\dfrac{1}{2}\times 2MC\times MP=\ell \sin \theta .\ell \cos \theta \\\ & ={{\ell }^{2}}\sin \theta \cos \theta \\\ \end{aligned}
As, we already have area of ΔDPC=2,\Delta DPC=2, Hence we get;
2sinθcosθ=2..............(3){{\ell }^{2}}\sin \theta \cos \theta =2..............\left( 3 \right)
Now, we know the equation of diagonals as well. As angles between them is 2θ,2\theta , hence, we can use the relation
tanθ=m1m21+m1m2\tan \theta =\left| \dfrac{{{m}_{1}}-{{m}_{2}}}{1+{{m}_{1}}{{m}_{2}}} \right|between two lines, where θ\theta is angle between them and m1 and m2{{m}_{1}}\text{ and }{{m}_{2}}are slopes of them.
As, here angle is 2θ2\theta between two diagonals, and slopes can be determined by equations (1) and (2), so,
m1=8,m2=8{{m}_{1}}=-8,{{m}_{2}}=8
Therefore,
tan2θ=881+(8)(8)=1663\tan 2\theta =\left| \dfrac{-8-8}{1+\left( -8 \right)\left( 8 \right)} \right|=\dfrac{16}{63}
Now, we can draw a triangle as

Where AC=AB2+BC2AC=\sqrt{A{{B}^{2}}+B{{C}^{2}}} by Pythagoras theorem,
AC=162+632 AC=256+3969 AC=4225 AC=65 \begin{aligned} & AC=\sqrt{{{16}^{2}}+{{63}^{2}}} \\\ & AC=\sqrt{256+3969} \\\ & AC=\sqrt{4225} \\\ & AC=65 \\\ \end{aligned}
Hence, from the given triangle, we get
cos2θ=6365,sin2θ=1665........................(4)\cos 2\theta =\dfrac{63}{65},\sin 2\theta =\dfrac{16}{65}........................\left( 4 \right)
Now, from equation (3), we have
2sinθcosθ=2{{\ell }^{2}}\sin \theta \cos \theta =2
Multiplying both sides by 2, we get
2(2sinθcosθ)=4{{\ell }^{2}}\left( 2\sin \theta \cos \theta \right)=4
We know that sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta , hence above equation can be written as;
2sin2θ=4{{\ell }^{2}}\sin 2\theta =4
From equation (4), we have ,
sin2θ=1665,hence 2×1665=4 2=654 or =652.................(5) \begin{aligned} & \sin 2\theta =\dfrac{16}{65},\text{hence} \\\ & {{\ell }^{2}}\times \dfrac{16}{65}=4 \\\ & {{\ell }^{2}}=\dfrac{65}{4}\text{ or }\ell =\dfrac{\sqrt{65}}{2}.................\left( 5 \right) \\\ \end{aligned}
Now, we can calculate length PM and PN from ΔPMC\Delta PMC.
As,
MC=sinθ PM=cosθ \begin{aligned} & MC=\ell \sin \theta \\\ & PM=\ell \cos \theta \\\ \end{aligned}
Now, we have cos2θ&sin2θ\cos 2\theta \And \sin 2\theta from equation (4), Hence, we need to convert sinθ&cosθ\sin \theta \And \cos \theta in following way;
We know a trigonometric identity as;
cos2θ=2cos2θ1=12sin2θ\cos 2\theta =2{{\cos }^{2}}\theta -1=1-2{{\sin }^{2}}\theta
Hence, we can rewrite the above identity as
cos2θ=1+cos2θ2,sin2θ=1cos2θ2 Or cosθ=1+cos2θ2, sinθ=1cos2θ2 \begin{aligned} & {{\cos }^{2}}\theta =\dfrac{1+{{\cos }^{2}}\theta }{2},{{\sin }^{2}}\theta =\dfrac{1-\cos 2\theta }{2} \\\ & Or \\\ & \cos \theta =\sqrt{\dfrac{1+\cos 2\theta }{2}}, \\\ & sin\theta =\sqrt{\dfrac{1-\cos 2\theta }{2}} \\\ \end{aligned}
Now, we can get MC and PM as
MC=1cos2θ2 and PM=1+cos2θ2 \begin{aligned} & MC=\ell \sqrt{\dfrac{1-\cos 2\theta }{2}} \\\ & and \\\ & PM=\ell \sqrt{\dfrac{1+\cos 2\theta }{2}} \\\ \end{aligned}
We know cos2θ=6365\cos 2\theta =\dfrac{63}{65} from equation (4),
Hence,
MC=163652=265×12 MC=65 and PM=1+63652=12865×12 PM=6465=865 \begin{aligned} & MC=\ell \sqrt{\dfrac{1-\dfrac{63}{65}}{2}}=\ell \sqrt{\dfrac{2}{65}\times }\dfrac{1}{2} \\\ & MC=\dfrac{\ell }{\sqrt{65}} \\\ & and \\\ & PM=\ell \sqrt{\dfrac{1+\dfrac{63}{65}}{2}}=\ell \sqrt{\dfrac{128}{65}\times \dfrac{1}{2}} \\\ & PM=\ell \sqrt{\dfrac{64}{65}}=\dfrac{8\ell }{\sqrt{65}} \\\ \end{aligned}
Now, we have already calculated the value of \ell , from equation (5). Hence,
PM=865×652=4 MC=165×652=12 \begin{aligned} & PM=\dfrac{8}{\sqrt{65}}\times \dfrac{\sqrt{65}}{2}=4 \\\ & MC=\dfrac{1}{\sqrt{65}}\times \dfrac{\sqrt{65}}{2}=\dfrac{1}{2} \\\ \end{aligned}
Therefore,
PM=4 and MC=12...................(6)PM=4\text{ and }MC=\dfrac{1}{2}...................\left( 6 \right)
Now, we know that if two linesax+by+c=0 and a1x+b1y+c1=0ax+by+c=0\text{ and }{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0 are given, then their bisector are given by relation;
ax+by+ca2+b2=±a1x+b1y+c1a12+b12..........(7)\dfrac{ax+by+c}{\sqrt{{{a}^{2}}+{{b}^{2}}}}=\pm \dfrac{{{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}}{\sqrt{{{a}_{1}}^{2}+{{b}_{1}}^{2}}}..........\left( 7 \right)
Now, from the given rectangle ABCD, MK and NQ are the bisector of diagonals BD and AC. Hence, we can write equation of MK and NQ by using equation (7) as;
We have diagonals BD and AC from equation (1) and (2) be
y+8x17=0 and y8x+7=0 or 8x+y17=0 and 8xy7=0 \begin{aligned} & y+8x-17=0\text{ and }y-8x+7=0 \\\ & or \\\ & 8x+y-17=0\text{ and }8x-y-7=0 \\\ \end{aligned}
Hence, using equation (7) we get equations of bisectors as;
8x+y1712+82=±8xy712+82 Or 8x+y17=±(8xy7) \begin{aligned} & \dfrac{8x+y-17}{\sqrt{{{1}^{2}}+{{8}^{2}}}}=\pm \dfrac{8x-y-7}{\sqrt{{{1}^{2}}+{{8}^{2}}}} \\\ & Or \\\ & 8x+y-17=\pm \left( 8x-y-7 \right) \\\ \end{aligned}
Case 1: Taking ‘+’ sign from another side of equal to, we get
8x+y17=8xy7 2y=10 y=5..............(8) \begin{aligned} & 8x+y-17=8x-y-7 \\\ & 2y=10 \\\ & y=5..............\left( 8 \right) \\\ \end{aligned}
Case 2: Taking ‘-’ sign from another side of equals to , we get,

& 8x+y-17=-8x+y+7 \\\ & 16x=24 \\\ & x=\dfrac{24}{16}=\dfrac{3}{2} \\\ & x=\dfrac{3}{2}....................\left( 9 \right) \\\ \end{aligned}$$ Now, as we already know that the MK bisector is parallel to AD and BC and the NQ bisector is parallel to AB and CD. Therefore, we have equations y = 5 and $x=\dfrac{3}{2}$ of the bisectors MK and QN and we know the distance PQ, PN, PM and PK as well. Case 1: If KM is representing y = 5 and QN is representing $x=\dfrac{3}{2}$. Then, AD and BC is given as $y=5\pm \left( PN\text{ or }QP \right)$ We have $$MC=PN=QP=\dfrac{1}{2}$$ from equation (6). Hence, $$\begin{aligned} & y=5\pm \dfrac{1}{2}=\dfrac{11}{2}\text{ and }\dfrac{9}{2} \\\ & y=\dfrac{11}{2}\text{ and }y=\dfrac{9}{2} \\\ \end{aligned}$$ Similarly, CD and AB are given as $\begin{aligned} & x=\dfrac{3}{2}\pm 4=\dfrac{11}{2}\text{ and }\dfrac{-5}{2} \\\ & x=\dfrac{-5}{2}\text{ and }x=\dfrac{11}{2} \\\ \end{aligned}$ Hence, equations of sides of rectangle are $x=\dfrac{-5}{2},x=\dfrac{11}{2}\text{ and }y=\dfrac{9}{2},\dfrac{11}{2}$ Case 2 : If KM is representing $x=\dfrac{3}{2}$ and QN is representing y = 5 AD and BC are given as; $\begin{aligned} & x=\dfrac{3}{2}\pm \dfrac{1}{2}=2,1 \\\ & x=1\And x=2 \\\ \end{aligned}$ CD and AB are given as $\begin{aligned} & y=5\pm 4=1,9 \\\ & y=1\And y=9 \\\ \end{aligned}$ Hence, equation of sides of rectangle are; X = 1, x = 2, and y = 1, y = 9 So, option A and C are the answer. Note: Another approach for this question would be to suppose four sides of rectangle i.e. AB, BC, CD and AD as $\begin{aligned} & y=mx+c \\\ & y=\dfrac{-1}{m}x+{{c}_{1}} \\\ & y=mx+{{c}_{2}} \\\ & y=\dfrac{-1}{m}x+{{c}_{3}} \\\ \end{aligned}$ Now, calculate distances between sides and equate area to 8. Now, find the intersection of the above equation to get A, B, C, D. Now, put the points A, B, C, D to given diagonals BD and AC to get four equations. Now, we will have five equations and five variables from the above conditions. Solving the equations takes longer than the given solution. One can get confused by the two cases explained in solutions. So there is a possibility of two rectangles according to the information. That’s why we have got 8 equations of lines 4 pairs representing one rectangle and 4 are representing others.