Solveeit Logo

Question

Question: Equation of two diameters of a circle are 2 x − 3 y = 5 and 3 x − 4 y = 7. The line joining the poin...

Equation of two diameters of a circle are 2 x − 3 y = 5 and 3 x − 4 y = 7. The line joining the points ( − 22 7 , − 4 ) and ( − 1 7 , 3 ) intersects the circle at only one point P ( α , β ). Then 17 β − α is equal to

A

2

Answer

2

Explanation

Solution

Solution:

  1. Find the center:

Since the diameters are given by

2x3y=5and3x4y=7,2x-3y=5 \quad \text{and} \quad 3x-4y=7,

their intersection is the center. Solve:

x=5+3y2.x=\frac{5+3y}{2}.

Substitute in 3x4y=73x-4y=7:

3(5+3y2)4y=7    15+9y24y=7.3\left(\frac{5+3y}{2}\right)-4y=7 \implies \frac{15+9y}{2}-4y=7.

Multiply by 2:

15+9y8y=14    y=1.15+9y-8y=14 \implies y=-1.

Then,

x=5+3(1)2=22=1.x=\frac{5+3(-1)}{2}=\frac{2}{2}=1.

Center C=(1,1)C=(1,-1).

  1. Determine the tangent line:

The line through the points

(227,4)and(17,3)\left(-\frac{22}{7},-4\right) \quad \text{and} \quad \left(-\frac{1}{7},3\right)

has slope:

m=3(4)(1/7)(22/7)=721/7=73.m=\frac{3-(-4)}{(-1/7)-(-22/7)}=\frac{7}{21/7}=\frac{7}{3}.

Thus its equation (using point-slope form) is:

y+4=73(x+227)y=73x+103.y+4=\frac{7}{3}\Bigl(x+\frac{22}{7}\Bigr) \quad\Longrightarrow\quad y=\frac{7}{3}x+\frac{10}{3}.

Since the line meets the circle only at one point PP, it is tangent.

  1. Find the point of tangency P(α,β)P(\alpha,\beta):

For a tangent, the radius CPCP is perpendicular to the tangent.

  • The slope of the tangent is 73\frac{7}{3}, so the slope of CPCP is 37-\frac{3}{7}.
  • The equation of CPCP is: y+1=37(x1)y=37x47.y+1=-\frac{3}{7}(x-1) \quad\Longrightarrow\quad y=-\frac{3}{7}x-\frac{4}{7}.

Since PP lies on both lines, equate:

73x+103=37x47.\frac{7}{3}x+\frac{10}{3}=-\frac{3}{7}x-\frac{4}{7}.

Multiply by 21 to clear denominators:

49x+70=9x12.49x+70=-9x-12.

Solving,

58x=82x=4129.58x=-82 \quad\Longrightarrow\quad x=-\frac{41}{29}.

Substitute xx in the equation of CPCP:

y=37(4129)47=123203116203=7203.y=-\frac{3}{7}\Bigl(-\frac{41}{29}\Bigr)-\frac{4}{7}=\frac{123}{203}-\frac{116}{203}=\frac{7}{203}.

Thus, P(4129,7203)P\left(-\frac{41}{29},\,\frac{7}{203}\right).

  1. Compute 17βα17\beta -\alpha: 17βα=17(7203)(4129)=119203+4129.17\beta-\alpha=17\Bigl(\frac{7}{203}\Bigr)-\left(-\frac{41}{29}\right)=\frac{119}{203}+\frac{41}{29}.

Since 203=729203=7\cdot29, write

4129=287203.\frac{41}{29}=\frac{287}{203}.

Therefore,

17βα=119+287203=406203=2.17\beta-\alpha=\frac{119+287}{203}=\frac{406}{203}=2.

Explanation (minimal):

  • Found center as intersection of diameters: C=(1,1)C=(1,-1).
  • Tangent line through the given points: y=73x+103y=\frac{7}{3}x+\frac{10}{3}.
  • The radius through point of tangency PP is perpendicular to the tangent, so its equation is: y=37x47y=-\frac{3}{7}x-\frac{4}{7}.
  • Solve the two equations to get P(4129,7203)P\left(-\frac{41}{29},\,\frac{7}{203}\right).
  • Calculate 17βα=217\beta-\alpha=2.