Question
Mathematics Question on Three Dimensional Geometry
Equation of the plane containing the straight line 2x=3y=4z and perpendicular to the plane containing the staight lines 2x=4y=2z and 4x=2y=3z is
x+2y−2z=0
3x+2y−2z=0
x−2y+2=0
5x+2y−42=0
x−2y+2=0
Solution
The DR's of normal to the plane containing 3x=4y=2z
and 4x=zy=3z.
\hspace20mm n_1= \begin{vmatrix}
\widehat {i} &\widehat {j} &\widehat {k} \\\
3 & 4 & 2 \\\
4 & 2 & 3 \\\
\end{vmatrix}= (8 \widehat {i}+ \widehat {j} +10\widehat {k})
Also, equation of plane
containing 2x=3y=4z and
DR's of normal to be
n1=ai+bj+ck
⇒ ax+by+cz=0.
\hspace30mm ...(i)
Where, n1:n2=0
\Rightarrow \hspace 30mm 8a-b-10c = 0 \hspace 20 mm ...(ii)
and n2⊥(2i+3j+4k)
\Rightarrow \hspace30mm 2a+3b+4c = 0 \hspace20mm ...(iii)
From Eqs (ii) and (iii),
\hspace20mm \frac{a}{-4+30} = \frac{b}{-20-32} = \frac{c}{24+2}
\Rightarrow\hspace 30mm \frac{a}{26} = \frac{b}{-52} = \frac{c}{26}
\Rightarrow\hspace30mm \frac{a}{1} = \frac{b}{-2} = \frac{c}{1}\hspace30mm ...(iv)
Form Eqs. (i) and (iv), required equation of plane is x−2y+z=0