Solveeit Logo

Question

Mathematics Question on Three Dimensional Geometry

Equation of the plane containing the straight line x2=y3=z4\frac{x}{2}=\frac{y}{3}= \frac{z}{4} and perpendicular to the plane containing the staight lines x2=y4=z2\frac{x}{2}=\frac{y}{4}= \frac{z}{2} and x4=y2=z3\frac{x}{4}=\frac{y}{2}= \frac{z}{3} is

A

x+2y2z=0x + 2y - 2z = 0

B

3x+2y2z=03x + 2y - 2z = 0

C

x2y+2=0x - 2y + 2 = 0

D

5x+2y42=05x + 2y - 42 = 0

Answer

x2y+2=0x - 2y + 2 = 0

Explanation

Solution

The DR's of normal to the plane containing x3=y4=z2\frac{x}{3}=\frac{y}{4}= \frac{z}{2}
and x4=yz=z3.\frac{x}{4}=\frac{y}{z}= \frac{z}{3}.
\hspace20mm n_1= \begin{vmatrix} \widehat {i} &\widehat {j} &\widehat {k} \\\ 3 & 4 & 2 \\\ 4 & 2 & 3 \\\ \end{vmatrix}= (8 \widehat {i}+ \widehat {j} +10\widehat {k})
Also, equation of plane
containing x2=y3=z4\frac{x}{2}=\frac{y}{3}= \frac{z}{4} and
DR's of normal to be
n1=ai^+bj^+ck^n_1 = a \widehat {i}+ b\widehat {j} +c\widehat {k}
  ax+by+cz=0\Rightarrow \ \ ax+by+cz = 0.
\hspace30mm ...(i)
Where, n1:n2=0n_1 : n_2 = 0
\Rightarrow \hspace 30mm 8a-b-10c = 0 \hspace 20 mm ...(ii)
and n2(2i^+3j^+4k^)n_2 \perp (2\widehat{i}+3\widehat{j}+4\widehat{k})
\Rightarrow \hspace30mm 2a+3b+4c = 0 \hspace20mm ...(iii)
From Eqs (ii) and (iii),
\hspace20mm \frac{a}{-4+30} = \frac{b}{-20-32} = \frac{c}{24+2}
\Rightarrow\hspace 30mm \frac{a}{26} = \frac{b}{-52} = \frac{c}{26}
\Rightarrow\hspace30mm \frac{a}{1} = \frac{b}{-2} = \frac{c}{1}\hspace30mm ...(iv)
Form Eqs. (i) and (iv), required equation of plane is x2y+z=0x - 2y + z = 0