Solveeit Logo

Question

Question: Equation of the normal to the ellipse 4(x - 1)<sup>2</sup> + 9(y - 2)<sup>2</sup> = 36, which are pa...

Equation of the normal to the ellipse 4(x - 1)2 + 9(y - 2)2 = 36, which are parallel to the line 3x - y = 1, is:

A

3x - y = 5\sqrt{5}

B

3x - y = 5\sqrt{5} - 3

C

3x - y = 5\sqrt{5} + 2

D

3x - y = 5\sqrt{5} (5\sqrt{5} + 1)

Answer

3x - y = 5\sqrt{5} (5\sqrt{5} + 1)

Explanation

Solution

(x1)29+(y2)24=1\frac{\mathbf{(x - 1}\mathbf{)}^{\mathbf{2}}}{\mathbf{9}}\mathbf{+}\frac{\mathbf{(y - 2}\mathbf{)}^{\mathbf{2}}}{\mathbf{4}}\mathbf{= 1}Equation of normal to ellipse X29+Y24=1\frac{X^{2}}{9} + \frac{Y^{2}}{4} = 1

3X secθ - 2Y cosecθ = 5

Slope of normal 32\frac{3}{2}tanθ = 3 ⇒ tanθ = 2

sinθ = 25\frac{2}{\sqrt{5}}, cosθ = 15\frac{1}{\sqrt{5}}

So normal is 35\sqrt{5}X - 5\sqrt{5}Y = 5

Now X = x - 1, Y = y - 2.

So 35\sqrt{5} (x - 1) - 5\sqrt{5} (y - 2) = 5

5\sqrt{5} (3x - y) = 5(5\sqrt{5} + 1)

3x – y = 5\sqrt{5} (5\sqrt{5} + 1).