Question
Question: Equation of the normal to the ellipse 4(x - 1)<sup>2</sup> + 9(y - 2)<sup>2</sup> = 36, which are pa...
Equation of the normal to the ellipse 4(x - 1)2 + 9(y - 2)2 = 36, which are parallel to the line 3x - y = 1, is:
A
3x - y = 5
B
3x - y = 5 - 3
C
3x - y = 5 + 2
D
3x - y = 5 (5 + 1)
Answer
3x - y = 5 (5 + 1)
Explanation
Solution
9(x−1)2+4(y−2)2=1Equation of normal to ellipse 9X2+4Y2=1
3X secθ - 2Y cosecθ = 5
Slope of normal 23tanθ = 3 ⇒ tanθ = 2
sinθ = 52, cosθ = 51
So normal is 35X - 5Y = 5
Now X = x - 1, Y = y - 2.
So 35 (x - 1) - 5 (y - 2) = 5
5 (3x - y) = 5(5 + 1)
3x – y = 5 (5 + 1).