Solveeit Logo

Question

Mathematics Question on Conic sections

Equation of the hyperbola with eccentricity 32 \frac{3}{2} and foci at (?2,0)(?2 ,0) is

A

x24y25=49 \frac{x^{2}}{4}-\frac{y^{2}}{5}=\frac{4}{9}

B

x29y29=49 \frac{x^{2}}{9}-\frac{y^{2}}{9}=\frac{4}{9}

C

x24y29=1 \frac{x^{2}}{4}-\frac{y^{2}}{9}=1

D

None of these

Answer

x24y25=49 \frac{x^{2}}{4}-\frac{y^{2}}{5}=\frac{4}{9}

Explanation

Solution

Let the equation of hyperbola be x2a2y2b2=1(i)\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\, \ldots\left(i\right) Given, e=32e=\frac{3}{2} and foci =(±ae,0)=(±2,0)=\left(\pm ae, 0\right)=\left(\pm2, 0\right) So, e=32e=\frac{3}{2} and ae=2ae=2 a×32=2\Rightarrow a\times\frac{3}{2}=2 a2=169\Rightarrow a^{2}=\frac{16}{9} Also, b2=a2(e21)b^{2} = a^{2}\left(e^{2}-1\right) b2=169(941)=209\Rightarrow b^{2}=\frac{16}{9}\left(\frac{9}{4}-1\right)=\frac{20}{9} On putting the values of a2a^{2} and b2b^{2} in (i)\left(i\right), we get x2(16/9)y2(20/9)=1\frac{x^{2}}{\left(16 / 9\right)}-\frac{y^{2}}{\left(20 / 9\right)}=1 x24y25=49\Rightarrow \frac{x^{2}}{4}-\frac{y^{2}}{5}=\frac{4}{9}