Solveeit Logo

Question

Question: Equation of the circle which touches the lines \(x = 0 , y = 0\) and \(3 x + 4 y = 4\) is....

Equation of the circle which touches the lines x=0,y=0x = 0 , y = 0 and 3x+4y=43 x + 4 y = 4 is.

A

x24x+y2+4y+4=0x ^ { 2 } - 4 x + y ^ { 2 } + 4 y + 4 = 0

B

x24x+y24y+4=0x ^ { 2 } - 4 x + y ^ { 2 } - 4 y + 4 = 0

C

x2+4x+y2+4y+4=0x ^ { 2 } + 4 x + y ^ { 2 } + 4 y + 4 = 0

D

x2+4x+y24y+4=0x ^ { 2 } + 4 x + y ^ { 2 } - 4 y + 4 = 0

Answer

x24x+y24y+4=0x ^ { 2 } - 4 x + y ^ { 2 } - 4 y + 4 = 0

Explanation

Solution

Let centre of circle be (h, k). Since it touches both axes, therefore h=k=ah = k = a

Hence equation can be (xa)2+(ya)2=a2( x - a ) ^ { 2 } + ( y - a ) ^ { 2 } = a ^ { 2 }

But it also touches the line 3x+4y=43 x + 4 y = 4.

Therefore, 3a+4a45=aa=2\frac { 3 a + 4 a - 4 } { 5 } = a \Rightarrow a = 2

Hence the required equation of circle is

x2+y24x4y+4=0x ^ { 2 } + y ^ { 2 } - 4 x - 4 y + 4 = 0 .