Solveeit Logo

Question

Mathematics Question on Conic sections

Equation of the circle centered at (4,3)(4, 3) touching the circle x2+y21x^2+y^2-1 externally, is _____

A

x2+y2+8x6y+9=0x^2 + y^2 + 8x - 6y + 9 = 0

B

x2+y28x+6y+9=0x^2+y^2-8x + 6y + 9 = 0

C

x2+y28t6y+9=0x^2 + y^2 - 8t - 6y + 9 = 0

D

x2+y2+8x+6y+9=0x^2 + y^2 + 8x + 6y + 9 = 0

Answer

x2+y28t6y+9=0x^2 + y^2 - 8t - 6y + 9 = 0

Explanation

Solution

Given that, equation of circle
x2+y2=1x^{2}+y^{2}=1

Centre at O(0,0)O \rightarrow(0,0)
Radius =OA=1=O A=1
Also, the centre of another circle C(4,3)\rightarrow C(4,3) both circle touch externally. Then, distance between centres =OC=O C.
=(40)2+(30)2=169=5=\sqrt{(4-0)^{2}+(3-0)^{2}}=\sqrt{16-9}=5
Now, AC=OCOAA C=O C-O A
AC=51=4A C=5-1=4
So, the radius of other circle is 4 .
Now, the equation of other circle touch externally to the circle x2+y2=1x^{2}+y^{2}=1 is,
(x4)2+(y3)2=16(x-4)^{2}+(y-3)^{2}=16
x2+y28x6y+9=0\Rightarrow x^{2}+y^{2}-8 x-6 y+9=0