Solveeit Logo

Question

Mathematics Question on Straight lines

Equation of the bisector of the acute angle between lines 3x+4y+5=03x + 4y + 5 = 0 and 12x5y7=012x -5y - 7 = 0 is

A

21x+77y+100=021x + 77y + 100 = 0

B

99x27y+30=099x - 27y+ 30= 0

C

99x+27y+30=099x + 27y+ 30= 0

D

21x77y+100=021x - 77y + 100 = 0

Answer

99x+27y+30=099x + 27y+ 30= 0

Explanation

Solution

Given equations are
3x+4y+5=03 x+4 y+5=0 and 12x5y7=012 x-5 y-7=0
a1a2+b1b2=3×12+4×(5)\therefore a_{1} a_{2}+b_{1} b_{2}=3 \times 12+4 \times(-5)
=16>0=16>0
\therefore For acute angle bisector
a1x+b1y+c1a12+b12=(a2x+b2y+c2)a22+b22\frac{ a _{1} x + b _{1} y + c _{1}}{\sqrt{ a _{1}^{2}+ b _{1}^{2}}}=-\frac{\left( a _{2} x + b _{2} y + c _{2}\right)}{\sqrt{ a _{2}^{2}+ b _{2}^{2}}}
3x+4y+59+16=(12x5y7)122+(5)2\therefore \frac{3 x +4 y +5}{\sqrt{9+16}}=-\frac{(12 x -5 y -7)}{\sqrt{12^{2}+(-5)^{2}}}
3x+4y+55=(12x5y7)13\Rightarrow \frac{3 x +4 y +5}{5}=-\frac{(12 x -5 y -7)}{13}
39x+52y+65=60x+25y+35\Rightarrow 39 x +52 y +65=-60 x +25 y +35
99x+27y+30=0\Rightarrow 99 x +27 y +30=0