Solveeit Logo

Question

Question: Equation of tangent to hyperbola \(\frac{x^{2}}{3} - \frac{y^{2}}{2} = 1\) equally inclined to coord...

Equation of tangent to hyperbola x23y22=1\frac{x^{2}}{3} - \frac{y^{2}}{2} = 1 equally inclined to coordinates axis is –

A

y = x + 1

B

y = x – 1

C

y = x + 2

D

y = x – 2

Answer

y = x + 1

Explanation

Solution

x23y22\frac{x^{2}}{3} - \frac{y^{2}}{2} = 1... (1) {a2=3b2=2 \left\{ \begin{matrix} a^{2} = 3 \\ b^{2} = 2 \end{matrix} \right.\

Eq of tangent in slope form

Ž y = mx ± a2m2b2\sqrt{a^{2}m^{2} - b^{2}} & m = ± 1