Solveeit Logo

Question

Question: Equation of plane progressive transverse wave in a dissipative medium has general form \(y = \text{...

Equation of plane progressive transverse wave in a dissipative medium has general form

y=Aeαxsinβ(t  Bx)y = \text{A}\text{e}^{- \alpha_{x}}\sin\beta(t\ - \ Βx) wherea, A, B, C are constant, x & y are displacement & t is time. Dimensions of a, b& B respectively are –

A

M0L-1T0M0L-1T-1M0LT-1M^{0}L^{\text{-1}}T^{0}\text{, }\text{M}^{0}L^{\text{-1}}T^{\text{-1}}\text{, }\text{M}^{0}\text{L}\text{T}^{\text{-1}}

B

M0L1T0M0L0 T-1M0L-1T1M^{0}L^{1}T^{0}\text{, }\text{M}^{0}L^{0}\text{ }\text{T}^{\text{-1}}\text{, }\text{M}^{0}L^{\text{-1}}T^{1}

C

M0L-1T1M0L-1T, M0L0T-1M^{0}L^{\text{-1}}T^{1}\text{, }\text{M}^{0}L^{\text{-1}}\text{T, }\text{M}^{0}L^{0}T^{\text{-1}}

D

M0L-1T0M0L0 T-1M0L-1T1M^{0}L^{\text{-1}}T^{0}\text{, }\text{M}^{0}L^{0}\text{ }\text{T}^{\text{-1}}\text{, }\text{M}^{0}L^{\text{-1}}T^{1}

Answer

M0L-1T0M0L0 T-1M0L-1T1M^{0}L^{\text{-1}}T^{0}\text{, }\text{M}^{0}L^{0}\text{ }\text{T}^{\text{-1}}\text{, }\text{M}^{0}L^{\text{-1}}T^{1}

Explanation

Solution

By def. [ax] = 1̃ [a] = M0L-1T0= \text{ }\text{M}^{0}L^{\text{-1}}T^{0}

[Bx] = [t] ̃ [B] = M0L-1T1= \text{ }\text{M}^{0}L^{\text{-1}}T^{1}

[bt] = 1̃ [b] = M0L0T-1= \text{ }\text{M}^{0}L^{0}T^{\text{-1}}