Solveeit Logo

Question

Question: Equation of circle of minimum radius which touches both the parabolas y = x<sup>2</sup> + 2x + 4 & x...

Equation of circle of minimum radius which touches both the parabolas y = x2 + 2x + 4 & x = y2 + 2y + 4 is –

A

4x2 + 4y2 – 11x – 11y – 13 = 0

B

2x2 + 2y2 – 11x – 11y – 13 = 0

C

3x2 + 3y2 – 11x – 11y – 13 = 0

D

x2 + y2 – 11x – 11y – 13 = 0

Answer

4x2 + 4y2 – 11x – 11y – 13 = 0

Explanation

Solution

y = x2 + 2x + 4

dydx\frac{dy}{dx} = 2x + 2 = 1 \ x = – 12\frac{1}{2}

y = 14\frac{1}{4} – 1 + 4 = 134\frac{13}{4}

\ point on y = x2 + 2x + 4 is (12,134)\left( - \frac{1}{2},\frac{13}{4} \right)

corresponding point on x = y2 + 2y + 4 is (134,12)\left( \frac{13}{4},\frac{- 1}{2} \right)

\ equation of circle is

(x+12)\left( x + \frac{1}{2} \right) (x134)\left( x - \frac{13}{4} \right)+ (y134)\left( y - \frac { 13 } { 4 } \right) (y+12)\left( y + \frac{1}{2} \right) = 0

i.e. x2 + y2114\frac{11}{4}x – 114\frac{11}{4}y – 134\frac{13}{4} = 0

i.e. 4x2 + 4y2 – 11x – 11y – 13 = 0