Solveeit Logo

Question

Question: Equation of a plane progressive wave is given by y = \(0.6.\sin 2\pi\left( t - \frac{x}{2} \right)\)...

Equation of a plane progressive wave is given by y = 0.6.sin2π(tx2)0.6.\sin 2\pi\left( t - \frac{x}{2} \right). On reflection from a denser medium its amplitude becomes 23\frac{2}{3} of the amplitude of the incident wave. The equation of the reflected wave is.

A

y=0.6sin2π(t+x2)y = 0.6\sin 2\pi\left( t + \frac{x}{2} \right)

B

y=0.4sin2π(t+x2)y = - 0.4\sin 2\pi\left( t + \frac{x}{2} \right)

C

y=0.4sin2π(t+x2)y = 0.4\sin 2\pi\left( t + \frac{x}{2} \right)

D

y=0.4sin2π(tx2)y = - 0.4\sin 2\pi\left( t - \frac{x}{2} \right)

Answer

y=0.4sin2π(t+x2)y = - 0.4\sin 2\pi\left( t + \frac{x}{2} \right)

Explanation

Solution

Amplitude of reflected wave

=23×0.6=0.4= \frac{2}{3} \times 0.6 = 0.4

On reflection from a denser medium there is phase change of π.\pi.

\thereforeEquations of reflected wave is

y=0.4sin2π(t+π2+π)y = 0.4\sin 2\pi\left( t + \frac{\pi}{2} + \pi \right)

=0.4sin2π(t+x2)= - 0.4\sin 2\pi\left( t + \frac{x}{2} \right)