Solveeit Logo

Question

Question: Equation of a line passing through the point of intersection of lines \(2 x - 3 y + 4 = 0\), \(3 x +...

Equation of a line passing through the point of intersection of lines 2x3y+4=02 x - 3 y + 4 = 0, 3x+4y5=03 x + 4 y - 5 = 0 and perpendicular to 6x7y+3=06 x - 7 y + 3 = 0 , then its equation is

A

119x+102y+125=0119 x + 102 y + 125 = 0

B

119x+102y=125119 x + 102 y = 125

C

119x102y=125119 x - 102 y = 125

D

None of these

Answer

119x+102y=125119 x + 102 y = 125

Explanation

Solution

The point of intersection of the lines 2x3y+4=02 x - 3 y + 4 = 0 and (117,2217)\left( \frac { - 1 } { 17 } , \frac { 22 } { 17 } \right)

The slope of required line = 76\frac { - 7 } { 6 } .

Hence, Equation of required line is, y227=76(x+234)y - \frac { 22 } { 7 } = \frac { - 7 } { 6 } \left( x + \frac { 2 } { 34 } \right)

119x+102y=125119 x + 102 y = 125 .