Solveeit Logo

Question

Physics Question on kinetic theory

Equation of a gas in terms of pressure (P), absolute temperature, (T) and density (rf) is:

A

P1T1d1=P2T2d2\frac{{{P}_{1}}}{{{T}_{1}}{{d}_{1}}}=\frac{{{P}_{2}}}{{{T}_{2}}{{d}_{2}}}

B

P1T1d1=P2d1d2\frac{{{P}_{1}}{{T}_{1}}}{{{d}_{1}}}=\frac{{{P}_{2}}{{d}_{1}}}{{{d}_{2}}}

C

P1d2T2=P2d1T1\frac{{{P}_{1}}{{d}_{2}}}{{{T}_{2}}}=\frac{{{P}_{2}}{{d}_{1}}}{{{T}_{1}}}

D

P1d1T1=P1d2T2\frac{{{P}_{1}}{{d}_{1}}}{{{T}_{1}}}=\frac{{{P}_{1}}{{d}_{2}}}{{{T}_{2}}}

Answer

P1T1d1=P2T2d2\frac{{{P}_{1}}}{{{T}_{1}}{{d}_{1}}}=\frac{{{P}_{2}}}{{{T}_{2}}{{d}_{2}}}

Explanation

Solution

Gas equation is PVT=constant=R\frac{PV}{T}=cons\tan t=R or P1V1T1=P2V2T2\frac{{{P}_{1}}{{V}_{1}}}{{{T}_{1}}}=\frac{{{P}_{2}}{{V}_{2}}}{{{T}_{2}}} If m is the mass of a gas and d1{{d}_{1}} and d2{{d}_{2}} are its density at absolute temperature T1K{{T}_{1}}K and T2K,{{T}_{2}}K, then V1=m/d1{{V}_{1}}=m/{{d}_{1}} and V2=m/d2{{V}_{2}}=m/{{d}_{2}} \therefore P1T1(md1)=P2T2(md2)\frac{{{P}_{1}}}{{{T}_{1}}}\left ( \frac{m}{{{d}_{1}}} \right)=\frac{{{P}_{2}}}{{{T}_{2}}}\left( \frac{m}{{{d}_{2}}} \right) P1T1d1=P2T2d2\frac{{{P}_{1}}}{{{T}_{1}}{{d}_{1}}}=\frac{{{P}_{2}}}{{{T}_{2}}{{d}_{2}}}