Solveeit Logo

Question

Question: Equal charges *Q* are placed at the four corners *A*, *B*, *C*, *D* of a square of length *a*. The m...

Equal charges Q are placed at the four corners A, B, C, D of a square of length a. The magnitude of the force on the charge at B will be

A

3Q24πε0a2\frac{3Q^{2}}{4\pi\varepsilon_{0}a^{2}}

B

4Q24πε0a2\frac{4Q^{2}}{4\pi\varepsilon_{0}a^{2}}

C

(1+122) Q24πε0a2\left( \frac{1 + 1\sqrt{2}}{2} \right)\ \frac{Q^{2}}{4\pi\varepsilon_{0}a^{2}}

D

(2+12) Q24πε0a2\left( 2 + \frac{1}{\sqrt{2}} \right)\ \frac{Q^{2}}{4\pi\varepsilon_{0}a^{2}}

Answer

(1+122) Q24πε0a2\left( \frac{1 + 1\sqrt{2}}{2} \right)\ \frac{Q^{2}}{4\pi\varepsilon_{0}a^{2}}

Explanation

Solution

After following the guidelines mentioned above

Fnet=FAC+FD=FA2+FC2+FDF_{net} = F_{AC} + F_{D} = \sqrt{F_{A}^{2} + F_{C}^{2} +}F_{D}Since FA=FC=kQ2a2F_{A} = F_{C} = \frac{kQ^{2}}{a^{2}}and FD=kQ2(a2)2F_{D} = \frac{kQ^{2}}{(a\sqrt{2})^{2}}

Fnet=2kQ2a2+kQ22a2=kQ2a2(2+12)=Q24πε0a2(1+222)F_{net} = \frac{\sqrt{2}kQ^{2}}{a^{2}} + \frac{kQ^{2}}{2a^{2}} = \frac{kQ^{2}}{a^{2}}\left( \sqrt{2} + \frac{1}{2} \right) = \frac{Q^{2}}{4\pi\varepsilon_{0}a^{2}}\left( \frac{1 + 2\sqrt{2}}{2} \right)