Solveeit Logo

Question

Question: $\int \frac{sec^8 x}{cosx} dx =$...

sec8xcosxdx=\int \frac{sec^8 x}{cosx} dx =

A

sec8x8+C\frac{sec^8 x}{8} + C

B

sec7x7+C\frac{sec^7 x}{7} + C

C

sec6x6+C\frac{sec^6 x}{6} + C

D

sec9x9+C\frac{sec^9 x}{9} + C

Answer

A

Explanation

Solution

The given integral is sec8xcosxdx\int \frac{\sec^8 x}{\cos x} dx.

This simplifies to sec8xsecxdx=sec9xdx\int \sec^8 x \cdot \sec x dx = \int \sec^9 x dx.

The derivative of options of the form seckxk+C\frac{\sec^k x}{k} + C is seckxtanx\sec^k x \tan x.

Since the options do not directly match the integral sec9xdx\int \sec^9 x dx, it is highly probable that there is a typo in the question.

Assuming the most common intended form for such problems, if the question meant sec8xtanxdx\int \sec^8 x \tan x dx, then by substituting u=secxu = \sec x, we get du=secxtanxdxdu = \sec x \tan x dx.

The integral becomes sec7x(secxtanx)dx=u7du=u88+C=sec8x8+C\int \sec^7 x (\sec x \tan x) dx = \int u^7 du = \frac{u^8}{8} + C = \frac{\sec^8 x}{8} + C. This matches option (A).