Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

Energy stored per unit volume of a parallel plate capacitor having plate area AA and plate separation d when charged to a potential of VV volts is (air space in between the plates)

A

12C2V2\frac{1}{2}{{C}^{2}}{{V}^{2}}

B

q24C\frac{{{q}^{2}}}{4\,C}

C

12ϵ0(Vd)\frac{1}{2}{{\epsilon}_{0}}\left( \frac{V}{d} \right)

D

12ϵ0(V2d2)\frac{1}{2}{{\epsilon}_{0}}\left( \frac{{{V}^{2}}}{{{d}^{2}}} \right)

Answer

12ϵ0(V2d2)\frac{1}{2}{{\epsilon}_{0}}\left( \frac{{{V}^{2}}}{{{d}^{2}}} \right)

Explanation

Solution

Energy stored in capacitor of capacitance C=12CV2C =\frac{1}{2} CV ^{2}
Capacitance of a parallel plate capacitor =C=Aϵ0d= C =\frac{ A \epsilon_{0}}{ d }
Volume of parallel plate capacitor =Ad=A d
Thus energy stored per unit volume =12CV2Ad=\frac{\frac{1}{2} CV ^{2}}{ Ad }
=12ϵ0V2d2=\frac{1}{2} \epsilon_{0} \frac{ V ^{2}}{ d ^{2}}