Solveeit Logo

Question

Question: Energy levels A, B, C of a certain atom corresponding to increasing values of energy i.e. \(E_{A} < ...

Energy levels A, B, C of a certain atom corresponding to increasing values of energy i.e. EA<EB<ECE_{A} < E_{B} < E_{C}. If λ1,6muλ2,6muλ3\lambda_{1},\mspace{6mu}\lambda_{2},\mspace{6mu}\lambda_{3}are the wavelengths of radiations

corresponding to the transitions C to B, B to A and C to A respectively, which of the following statements is correct.

A

λ3=λ1+λ2\lambda_{3} = \lambda_{1} + \lambda_{2}

B

λ3=λ1λ2λ1+λ2\lambda_{3} = \frac{\lambda_{1}\lambda_{2}}{\lambda_{1} + \lambda_{2}}

C

λ1+λ2+λ3=0\lambda_{1} + \lambda_{2} + \lambda_{3} = 0

D

λ32=λ12+λ22\lambda_{3}^{2} = \lambda_{1}^{2} + \lambda_{2}^{2}

Answer

λ3=λ1λ2λ1+λ2\lambda_{3} = \frac{\lambda_{1}\lambda_{2}}{\lambda_{1} + \lambda_{2}}

Explanation

Solution

Let the energy in A, B and C state be EA. EB and EC, then from the figure

νBalmer=cλmax[1(2)21(3)2]5RC36\nu_{\text{Balmer}} = \frac{c}{\lambda_{\max}\left\lbrack \frac{1}{(2)^{2}} - \frac{1}{(3)^{2}} \right\rbrack\frac{5RC}{36}}or hcλ1+hcλ2=hcλ3\frac{hc}{\lambda_{1}} + \frac{hc}{\lambda_{2}} = \frac{hc}{\lambda_{3}}

λ3=λ1λ2λ1+λ2\Rightarrow \lambda_{3} = \frac{\lambda_{1}\lambda_{2}}{\lambda_{1} + \lambda_{2}}.