Solveeit Logo

Question

Physics Question on thermal properties of matter

Energy is being emitted from the surface of a black body at 127C127{}^\circ C at the rate of (1.0×106)/sm2(1.0\times {{10}^{6}})/s{{m}^{2}} . The temperature of a black body at which the rate of energy emission is (16.0×106)/sm2(16.0\times {{10}^{6}})/s{{m}^{2}} will be

A

727C727{}^\circ C

B

527C527{}^\circ C

C

508C508{}^\circ C

D

254C254{}^\circ C

Answer

527C527{}^\circ C

Explanation

Solution

Here, T1=127C=400K{{T}_{1}}=127{}^\circ C=400K E2=16×106J/sm2{{E}_{2}}=16\times {{10}^{6}}J/s{{m}^{2}} E1=1×106J/sm2{{E}_{1}}=1\times {{10}^{6}}J/s{{m}^{2}} Using the relation. E2E1=(T2T1)4\frac{{{E}_{2}}}{{{E}_{1}}}={{\left( \frac{{{T}_{2}}}{{{T}_{1}}} \right)}^{4}} T2T1=E2E1=(16.0×1061×106)1/4=2\frac{{{T}_{2}}}{{{T}_{1}}}=\frac{{{E}_{2}}}{{{E}_{1}}}={{\left( \frac{16.0\times {{10}^{6}}}{1\times {{10}^{6}}} \right)}^{1/4}}=2 T2=2×T1=2×400=800K{{T}_{2}}=2\times {{T}_{1}}=2\times 400=800K T2=527C{{T}_{2}}=527{}^\circ C