Solveeit Logo

Question

Chemistry Question on Atomic Models

Emission transitions in the Paschen series end at orbit n = 3 and start from orbit n and can be represented as v = 3.29 × 1015 (Hz) [1321n2\frac{1}{3^2}-\frac{1}{n^2}] Calculate the value of n if the transition is observed at 1285 nm. Find the region of the spectrum.

Answer

Wavelength of transition = 1285 nm
= 1285 × 109m (Given)
v = 3.29 × 1015 (1321n2\frac{1}{3^2}-\frac{1}{n^2}) (Given)
Since v = c / λ = 3.0×108ms11285×109m\frac{3.0 × 10^8 ms ^{- 1} }{1285 × 10^{-9} m}
v = 2.33 × 1014 s-1
Substituting the value of v in the given expression,
3.29 × 1015 (191n2\frac{1}{9}-\frac{1}{n^2}) = 2.33 × 1014
191n2\frac{1}{9}-\frac{1}{n^2}=2.33×10143.29×1015\frac{2.33\times10^{14}}{3.29\times 10^{15}}
19\frac{1}{9} - 0.7082 × 10 - 1 = 1n2\frac{1}{n^2}
1n2\frac{1}{n^2} = 1 .1 × 10 -1 - 0.7082 × 10 -1
1n2\frac{1}{n^2} = 4.029 × 10 - 2
n = 14.029×102\sqrt{\frac{1}{4.029}}\times10^{-2}
n= 4.98 n
Hence, for the transition to be observed at 1285 nm, n= 5.
The spectrum lies in the infra-red region.