Solveeit Logo

Question

Question: Find the locus of the middle points of chords of an ellipse $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ whic...

Find the locus of the middle points of chords of an ellipse x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 which are drawn through the positive end of the minor axis.

A

x2a2+y2b2yb=0\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{y}{b}=0

B

x2a2+y2b2+yb=0\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{y}{b}=0

C

x2a2y2b2yb=0\frac{x^2}{a^2}-\frac{y^2}{b^2}-\frac{y}{b}=0

D

x2a2y2b2+yb=0\frac{x^2}{a^2}-\frac{y^2}{b^2}+\frac{y}{b}=0

Answer

x2a2+y2b2yb=0\frac{x^2}{a^2}+\frac{y^2}{b^2}-\frac{y}{b}=0

Explanation

Solution

Let the ellipse be x2a2+y2b2=1\frac{x^2}{a^2}+\frac{y^2}{b^2}=1. Assume a>ba>b, so the positive end of the minor axis is (0,b)(0, b). Let M(h,k)M(h, k) be the midpoint of a chord passing through (0,b)(0, b). Let the endpoints of the chord be P(x1,y1)P(x_1, y_1) and Q(x2,y2)Q(x_2, y_2). The midpoint M(h,k)M(h, k) has coordinates h=x1+x22h = \frac{x_1+x_2}{2} and k=y1+y22k = \frac{y_1+y_2}{2}. The equation of the chord with midpoint (h,k)(h, k) is given by T=S1T = S_1, where T=xha2+ykb2T = \frac{xh}{a^2} + \frac{yk}{b^2} and S1=h2a2+k2b2S_1 = \frac{h^2}{a^2} + \frac{k^2}{b^2}. So, the equation of the chord is xha2+ykb2=h2a2+k2b2\frac{xh}{a^2} + \frac{yk}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2}. Since this chord passes through the point (0,b)(0, b), we substitute x=0x=0 and y=by=b into the equation of the chord: (0)ha2+(b)kb2=h2a2+k2b2\frac{(0)h}{a^2} + \frac{(b)k}{b^2} = \frac{h^2}{a^2} + \frac{k^2}{b^2} kb=h2a2+k2b2\frac{k}{b} = \frac{h^2}{a^2} + \frac{k^2}{b^2} Rearranging the terms to find the locus of (h,k)(h, k): h2a2+k2b2kb=0\frac{h^2}{a^2} + \frac{k^2}{b^2} - \frac{k}{b} = 0 Replacing hh with xx and kk with yy to get the locus equation: x2a2+y2b2yb=0\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{y}{b} = 0

This equation represents an ellipse. It can be rewritten as: x2a2+1b2(y2by)=0\frac{x^2}{a^2} + \frac{1}{b^2}(y^2 - by) = 0 x2a2+1b2(y2by+b24b24)=0\frac{x^2}{a^2} + \frac{1}{b^2}(y^2 - by + \frac{b^2}{4} - \frac{b^2}{4}) = 0 x2a2+1b2((yb2)2b24)=0\frac{x^2}{a^2} + \frac{1}{b^2}((y - \frac{b}{2})^2 - \frac{b^2}{4}) = 0 x2a2+(yb2)2b214=0\frac{x^2}{a^2} + \frac{(y - \frac{b}{2})^2}{b^2} - \frac{1}{4} = 0 x2a2+(yb2)2b2=14\frac{x^2}{a^2} + \frac{(y - \frac{b}{2})^2}{b^2} = \frac{1}{4} x2a2/4+(yb/2)2b2/4=1\frac{x^2}{a^2/4} + \frac{(y - b/2)^2}{b^2/4} = 1 This is the equation of an ellipse with center (0,b/2)(0, b/2) and semi-axes a/2a/2 and b/2b/2.