Solveeit Logo

Question

Question: $\ell = 30m$ $\underline{m}$ ? ...

=30m\ell = 30m

m\underline{m} ?

Answer

m8.55×107kgm \approx 8.55\times10^7\,\mathrm{kg}.

Explanation

Solution

We have two identical spheres (mass = m) hanging by strings of length ℓ = 30 m. They carry charges 3 C (left) and 2 C (right) and are in electrostatic equilibrium. The strings make an angle of 15° with the vertical (since the total angle between them is 30°).

For each sphere, resolve the forces:

  • Weight: mgmg downward.
  • Tension: TT along the string.
  • Electrostatic repulsion: FeF_e horizontally.

In equilibrium,

Tcos15=mgandTsin15=Fe.T\cos15^\circ = mg \quad \text{and} \quad T\sin15^\circ = F_e.

Dividing,

tan15=Femgm=Fegtan15.\tan15^\circ = \frac{F_e}{mg} \quad\Longrightarrow\quad m = \frac{F_e}{g\,\tan15^\circ}.

The horizontal repulsive force between the spheres is given by Coulomb’s law:

Fe=k(3)(2)d2=6kd2,F_e = k\,\frac{(3)(2)}{d^2} = \frac{6k}{d^2},

where k=9×109Nm2/C2k = 9\times10^9 \,\mathrm{N\,m^2/C^2} and the separation dd is determined by the horizontal displacement of each sphere:

d=2sin15.d = 2\ell\sin15^\circ.

Thus,

d2=42sin215.d^2 = 4\ell^2\sin^2 15^\circ.

So,

Fe=6k42sin215=3k22sin215.F_e = \frac{6k}{4\ell^2\sin^2 15^\circ} = \frac{3k}{2\ell^2\sin^2 15^\circ}.

Substitute FeF_e into the m-equation:

m=3k22sin215gtan15.m = \frac{3k}{2\ell^2\sin^2 15^\circ\,g\,\tan15^\circ}.

Inserting numerical values:

  • ℓ = 30 m,
  • k=9×109Nm2/C2k = 9\times10^9 \,\mathrm{N\,m^2/C^2},
  • g=9.8m/s2g = 9.8\,\mathrm{m/s^2},
  • sin150.258819\sin15^\circ \approx 0.258819 so that sin215(0.258819)20.066987\sin^2 15^\circ \approx (0.258819)^2 \approx 0.066987,
  • tan150.267949\tan15^\circ \approx 0.267949.

Now,

m=3×9×1092×(30)2×0.066987×9.8×0.267949.m = \frac{3\times9\times10^9}{2\times(30)^2\times0.066987\times9.8\times0.267949}.

Calculate step‐by‐step:

  1. (30)2=900(30)^2 = 900.
  2. Denominator factor: 2×900=18002 \times 900 = 1800.
  3. Then, 1800×0.066987120.3761800 \times 0.066987 \approx 120.376.
  4. Next, 120.376×9.81179.725120.376 \times 9.8 \approx 1179.725.
  5. And then, 1179.725×0.267949315.751179.725 \times 0.267949 \approx 315.75.

The numerator is:

3×9×109=27×109.3\times9\times10^9 = 27\times10^9.

Thus,

m27×109315.7585.5×106kg=8.55×107kg.m \approx \frac{27\times10^9}{315.75} \approx 85.5\times10^6\,\mathrm{kg} = 8.55\times10^7\,\mathrm{kg}.