Solveeit Logo

Question

Question: Eliminate \(t\) in \(p\tan t+q\sec t-x=0,{{p}^{'}}\tan t+{{q}^{'}}\sec t-y=0\) where \(p,{{p}^{'}},q...

Eliminate tt in ptant+qsectx=0,ptant+qsecty=0p\tan t+q\sec t-x=0,{{p}^{'}}\tan t+{{q}^{'}}\sec t-y=0 where p,p,q,q,x,yp,{{p}^{'}},q,{{q}^{'}},x,y are real numbers.

Explanation

Solution

We multiply q{{q}^{'}} with first equation and qq with second equation in order to eliminate sect\sec t. We find tant\tan t in terms of the given constant terms here and which we put in first equation to get sect\sec t. We use the trigonometric formula sec2ttan2t=1{{\sec }^{2}}t-{{\tan }^{2}}t=1 and put tant,sect\tan t,\sec tto eliminate tt.

Complete step-by-step solution:
We know that in the method of elimination when we are asked to eliminate a particular variable of constant we have to find a relation among the rest of the variables and constants.
The given pair of equations are

& p\tan t+q\sec t-x=0...(1) \\\ & {{p}^{'}}\tan t+{{q}^{'}}\sec t-y=0...(2) \\\ \end{aligned}$$ We are asked to eliminate $t$ here which is present in $\tan t$ and $\sec t.$ So we need to find a relation among rest of the real constants $p,{{p}^{'}},q,{{q}^{'}},x,y$ free of $\tan t$ and $\sec t.$ We first multiply ${{q}^{'}}$ with equation (1) and $q$ with equation (2) in order to eliminate $\sec t$. We have $$\begin{aligned} & p{{q}^{'}}\tan t+q{{q}^{'}}\sec t-x{{q}^{'}}=0...(1) \\\ & {{p}^{'}}q\tan t+q{{q}^{'}}\sec t-yq=0...(2) \\\ \end{aligned}$$ We now subtract equation(2) from equation (1) and get $$\begin{aligned} & \left( p{{q}^{'}}-{{p}^{'}}q \right)\tan t-\left( x{{q}^{'}}-yq \right)=0 \\\ & \Rightarrow \tan t=\dfrac{x{{q}^{'}}-yq}{p{{q}^{'}}-{{p}^{'}}q} \\\ \end{aligned}$$ We put the value of $\tan t$ in equation (1) and get , $$\begin{aligned} & p\left( \dfrac{x{{q}^{'}}-yq}{p{{q}^{'}}-{{p}^{'}}q} \right)+q\sec t-x=0 \\\ & \Rightarrow q\sec t=x-p\left( \dfrac{x{{q}^{'}}-yq}{p{{q}^{'}}-{{p}^{'}}q} \right) \\\ & \Rightarrow q\sec t=\dfrac{xp{{q}^{'}}-x{{p}^{'}}q-xp{{q}^{'}}+ypq}{p{{q}^{'}}-{{p}^{'}}q} \\\ & \Rightarrow q\sec t=\dfrac{ypq-x{{p}^{'}}q}{p{{q}^{'}}-{{p}^{'}}q} \\\ \end{aligned}$$ We divide both side by $q$ and get , $$\sec t=\dfrac{yp-x{{p}^{'}}}{p{{q}^{'}}-{{p}^{'}}q}$$ We know from the trigonometric identity that $${{\sec }^{2}}t-{{\tan }^{2}}t=1$$ We put the values of $\sec t$ and $\tan t$ and proceed , $${{\left( \dfrac{yp-x{{p}^{'}}}{p{{q}^{'}}-{{p}^{'}}q} \right)}^{2}}-{{\left( \dfrac{x{{q}^{'}}-yq}{p{{q}^{'}}-{{p}^{'}}q} \right)}^{2}}=1$$ We multiply ${{\left( p{{q}^{'}}-{{p}^{'}}q \right)}^{2}}$ in all of the above terms and get , $${{\left( yp-x{{p}^{'}} \right)}^{2}}-{{\left( x{{q}^{'}}-yq \right)}^{2}}={{\left( p{{q}^{'}}-{{p}^{'}}q \right)}^{2}}$$ The above obtained equation is free of $\sec t,\tan t$ and hence is also free of $t$. So it is the required equation. **Note:** We take note of that the given real constants $p,{{p}^{'}},q,{{q}^{'}}$ are non-zero as well the $p{{q}^{'}}-{{p}^{'}}q$ is nonzero. We can also begin with eliminating $\tan t$ and then find $\sec t$. We know that when are given a pair of linear equations ${{a}_{1}}x+{{b}_{1}}y+{{c}_{1}}=0,{{a}_{2}}x+{{b}_{2}}y+{{c}_{2}}=0$ we can directly find unknowns as $x=\dfrac{{{b}_{1}}{{c}_{2}}-{{b}_{2}}{{c}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}},y=\dfrac{{{c}_{1}}{{a}_{2}}-{{c}_{2}}{{a}_{1}}}{{{a}_{1}}{{b}_{2}}-{{a}_{2}}{{b}_{1}}}$ where ${{a}_{1}}{{b}_{2}}-{{a}_{1}}{{b}_{2}}$ is non-zero.