Solveeit Logo

Question

Question: Surface density of charge on a sphere of radius 'R' in terms of electric intensity 'E' at a distance...

Surface density of charge on a sphere of radius 'R' in terms of electric intensity 'E' at a distance 'r' in free space is (ϵ0\epsilon_0 = permittivity of free space)

A

ϵ0E(Rr)2\epsilon_0 E (\frac{R}{r})^2

B

ϵ0ERr2\frac{\epsilon_0 ER}{r^2}

C

ϵ0E(rR)2\epsilon_0 E (\frac{r}{R})^2

D

ϵ0ErR2\frac{\epsilon_0 Er}{R^2}

Answer

ϵ0E(rR)2\epsilon_0 E \left(\frac{r}{R}\right)^2

Explanation

Solution

The surface charge density σ\sigma is given by:

σ=Q4πR2\sigma = \frac{Q}{4\pi R^2}

Using Gauss’s law:

E(4πr2)=Qϵ0E(4\pi r^2) = \frac{Q}{\epsilon_0}

Thus,

Q=4πϵ0Er2Q = 4\pi \epsilon_0 E r^2

Substituting QQ into the expression for σ\sigma:

σ=4πϵ0Er24πR2=ϵ0E(rR)2\sigma = \frac{4\pi \epsilon_0 E r^2}{4\pi R^2} = \epsilon_0 E \left(\frac{r}{R}\right)^2