Solveeit Logo

Question

Physics Question on Dual nature of matter

Electrons of mass mm with de-Broglie wavelength λ\lambda fall on the target in an X-ray tube. The cutoff wavelength (λ0)(\lambda_0) of the emitted X-ray is

A

λ0=2mcλ2h\lambda_0 = \frac{2 mc \lambda^2}{h}

B

λ0=2hmc\lambda_0 = \frac{2h}{mc}

C

λ0=2m2c2λ3h2\lambda_0 = \frac{2 m^2c^2 \lambda^3}{h^2}

D

λ0=λ\lambda_0 = \lambda

Answer

λ0=2mcλ2h\lambda_0 = \frac{2 mc \lambda^2}{h}

Explanation

Solution

λ0=hcKEe λ0=hch2/2mλ2λ=h2mKEe KEe=h22mλ2\begin{matrix} \lambda_{0} = \frac{hc}{KE_{e}} \\\ \lambda_{0} = \frac{hc}{h^{2}/2m \lambda^{2}} \end{matrix} \Bigg| \begin{matrix} \lambda= \frac{h}{\sqrt{2mKE_{e}}} \\\ KE_{e} = \frac{h^{2}}{2m \lambda^{2}} \end{matrix}
\hspace15mm \lambda_{0} = \frac{2mc}{h} \lambda^{2}