Solveeit Logo

Question

Physics Question on Electromagnetic waves

Electromagnetic waves travel in a medium with a speed of 1.5×108ms11.5 \times 10^8 \, \text{ms}^{-1}. The relative permeability of the medium is 2.02.0. The relative permittivity will be:

A

5

B

4

C

1

D

2

Answer

2

Explanation

Solution

The speed of electromagnetic waves in a medium is related to its relative permeability (μr\mu_r) and relative permittivity (εr\varepsilon_r) by the equation:

εrμr=c2v2,\varepsilon_r \mu_r = \frac{c^2}{v^2},

where:
- c=3×108ms1c = 3 \times 10^8 \, \text{ms}^{-1} (speed of light in vacuum),
- v=1.5×108ms1v = 1.5 \times 10^8 \, \text{ms}^{-1} (speed of light in the medium),
- μr=2.0\mu_r = 2.0 (relative permeability of the medium).

Substituting the given values:

εr×2=(3×108)2(1.5×108)2.\varepsilon_r \times 2 = \frac{(3 \times 10^8)^2}{(1.5 \times 10^8)^2}.

Simplify:

εr×2=9×10162.25×1016.\varepsilon_r \times 2 = \frac{9 \times 10^{16}}{2.25 \times 10^{16}}.

εr×2=4.\varepsilon_r \times 2 = 4.

εr=2.\varepsilon_r = 2.

Final Answer: εr=2\varepsilon_r = 2 (Option 4)