Solveeit Logo

Question

Question: Electric field variation between the plates of capacitor is shown. Find relation between K₁, K₂, K₃,...

Electric field variation between the plates of capacitor is shown. Find relation between K₁, K₂, K₃, if 2x = y.

A

1K2=1K1+1K3\displaystyle \frac{1}{K_2} = \frac{1}{K_1} + \frac{1}{K_3}

B

3K2=2K1+1K3\displaystyle \frac{3}{K_2} = \frac{2}{K_1} + \frac{1}{K_3}

C

2K2=1K1+4K3\displaystyle \frac{2}{K_2} = \frac{1}{K_1} + \frac{4}{K_3}

D

None

Answer

3K2=2K1+1K3\displaystyle \frac{3}{K_2} = \frac{2}{K_1} + \frac{1}{K_3}

Explanation

Solution

Key idea: Continuous electric displacement DD implies

D=ε0K1E1=ε0K2E2=ε0K3E3.D=\varepsilon_0K_1E_1=\varepsilon_0K_2E_2=\varepsilon_0K_3E_3.

Thus

E1E2=K2K1,E2E3=K3K2.\frac{E_1}{E_2}=\frac{K_2}{K_1},\quad \frac{E_2}{E_3}=\frac{K_3}{K_2}.

The graph shows steps:

E1E2=x,E2E3=y=2x.E_1 - E_2 = x,\quad E_2 - E_3 = y = 2x.

Substitute

E1E2=E2(K2K11)=x,E2E3=E3(K2K31)=2x.E_1 - E_2 = E_2\Bigl(\frac{K_2}{K_1}-1\Bigr)=x, \quad E_2 - E_3 = E_3\Bigl(\frac{K_2}{K_3}-1\Bigr)=2x.

Eliminating E2E_2 and E3E_3 yields after algebra

3K2=2K1+1K3.\frac{3}{K_2}=\frac{2}{K_1}+\frac{1}{K_3}.