Solveeit Logo

Question

Question: Electric field at point P is given by $E=rE_0$. The total flux through the given cylinder of radius ...

Electric field at point P is given by E=rE0E=rE_0. The total flux through the given cylinder of radius R and height h is

A

E_0 \pi R^2 h

B

2 E_0 \pi R^2 h

C

3 E_0 \pi R^2 h

D

4 E_0 \pi R^2 h

Answer

2 E_0 \pi R^2 h

Explanation

Solution

The electric field is given by E=rE0E = rE_0. Assuming this means the electric field is radial and its magnitude depends on the radial distance rr from the central axis of the cylinder, we can write the electric field vector as E=E0rr^\vec{E} = E_0 r \hat{r}, where r^\hat{r} is the radial unit vector.

To find the total flux through the cylinder, we can use Gauss's divergence theorem: Φ=SEdA=V(E)dV\Phi = \oint_S \vec{E} \cdot d\vec{A} = \int_V (\nabla \cdot \vec{E}) dV

First, we calculate the divergence of the electric field in cylindrical coordinates. For E=E0rr^\vec{E} = E_0 r \hat{r}, the components are Er=E0rE_r = E_0 r, Eθ=0E_\theta = 0, and Ez=0E_z = 0. The divergence in cylindrical coordinates is: E=1rr(rEr)+1rEθθ+Ezz\nabla \cdot \vec{E} = \frac{1}{r} \frac{\partial}{\partial r} (r E_r) + \frac{1}{r} \frac{\partial E_\theta}{\partial \theta} + \frac{\partial E_z}{\partial z} Substituting the components: E=1rr(r(E0r))+1r(0)θ+(0)z=1rr(E0r2)=1r(2E0r)=2E0\nabla \cdot \vec{E} = \frac{1}{r} \frac{\partial}{\partial r} (r (E_0 r)) + \frac{1}{r} \frac{\partial (0)}{\partial \theta} + \frac{\partial (0)}{\partial z} = \frac{1}{r} \frac{\partial}{\partial r} (E_0 r^2) = \frac{1}{r} (2 E_0 r) = 2 E_0 The divergence of the electric field is a constant, 2E02E_0.

Now, we integrate the divergence over the volume of the cylinder. The volume of the cylinder of radius RR and height hh is V=πR2hV = \pi R^2 h. Φ=V(E)dV=V(2E0)dV=2E0VdV\Phi = \int_V (\nabla \cdot \vec{E}) dV = \int_V (2 E_0) dV = 2 E_0 \int_V dV Φ=2E0V=2E0(πR2h)\Phi = 2 E_0 V = 2 E_0 (\pi R^2 h)

Alternatively, we can calculate the flux through each surface of the cylinder:

  1. Top surface: The area vector is dAtop=dAk^d\vec{A}_{top} = dA \hat{k}. Since E=E0rr^\vec{E} = E_0 r \hat{r}, EdAtop=(E0rr^)(dAk^)=0\vec{E} \cdot d\vec{A}_{top} = (E_0 r \hat{r}) \cdot (dA \hat{k}) = 0. So, Φtop=0\Phi_{top} = 0.
  2. Bottom surface: The area vector is dAbottom=dAk^d\vec{A}_{bottom} = -dA \hat{k}. EdAbottom=(E0rr^)(dAk^)=0\vec{E} \cdot d\vec{A}_{bottom} = (E_0 r \hat{r}) \cdot (-dA \hat{k}) = 0. So, Φbottom=0\Phi_{bottom} = 0.
  3. Curved lateral surface: The radius is r=Rr=R. The area vector is dAlateral=Rdθdzr^d\vec{A}_{lateral} = R d\theta dz \hat{r}. The electric field on this surface is E=E0Rr^\vec{E} = E_0 R \hat{r}. EdAlateral=(E0Rr^)(Rdθdzr^)=E0R2dθdz\vec{E} \cdot d\vec{A}_{lateral} = (E_0 R \hat{r}) \cdot (R d\theta dz \hat{r}) = E_0 R^2 d\theta dz Integrating over the curved surface: Φlateral=z=0hθ=02πE0R2dθdz=E0R20hdz02πdθ=E0R2(h)(2π)=2πR2hE0\Phi_{lateral} = \int_{z=0}^{h} \int_{\theta=0}^{2\pi} E_0 R^2 d\theta dz = E_0 R^2 \int_{0}^{h} dz \int_{0}^{2\pi} d\theta = E_0 R^2 (h)(2\pi) = 2\pi R^2 h E_0 The total flux is the sum of fluxes through all surfaces: Φtotal=Φtop+Φbottom+Φlateral=0+0+2πR2hE0=2E0πR2h\Phi_{total} = \Phi_{top} + \Phi_{bottom} + \Phi_{lateral} = 0 + 0 + 2\pi R^2 h E_0 = 2 E_0 \pi R^2 h.

Both methods yield the same result.