Solveeit Logo

Question

Physics Question on Surface tension

Eight drops of water of 0.6 mm radius each merge to form one big drop. If the surface tension of water is 0.072 Nm1,0.072\text{ }N{{m}^{-1}}, the energy dissipated in the process is

A

16 π×107J16~\pi \times {{10}^{-7}}J

B

4.15 π×107J4.15~\pi \times {{10}^{-7}}J

C

2.0.75 π×107J2.0.75~\pi \times {{10}^{-7}}J

D

8 π×107J8~\pi \times {{10}^{-7}}J

Answer

4.15 π×107J4.15~\pi \times {{10}^{-7}}J

Explanation

Solution

Volume of 8 drops of water = Volume of big drop of water Given that, Radius of small drop r = 0.6 mm \therefore 8×43π(0.6)3=43πR38\times \frac{4}{3}\pi {{(0.6)}^{3}}=\frac{4}{3}\pi {{R}^{3}} or 2×0.6=R2\times 0.6=R or R=1.2mmR=1.2\,mm where R is the radius of big drop. Change in surface area ΔA=4πr2×84πR2\Delta A=4\pi {{r}^{2}}\times 8-4\pi {{R}^{2}} =4π[(0.6)2×8(1.2)2]×106=4\pi [{{(0.6)}^{2}}\times 8-{{(1.2)}^{2}}]\times {{10}^{-6}} =4π(0.36×81.44)×106=4\pi (0.36\times 8-1.44)\times {{10}^{-6}} =4π(2.881.44)×106=4\pi (2.88-1.44)\times {{10}^{-6}} ΔA=4π(1.44)×106m2\Delta A=4\pi (1.44)\times {{10}^{-6}}{{m}^{2}} Energy dissipated in this process E=T×ΔAE=T\times \Delta A =0.072×4π×1.44×106=0.072\times 4\pi \times 1.44\times {{10}^{-6}} =28.8×102×π×1.44×106=28.8\times {{10}^{-2}}\times \pi \times 1.44\times {{10}^{-6}} E=4.15π×107JE=4.15\pi \times {{10}^{-7}}J