Solveeit Logo

Question

Question: If $f(x) = \begin{cases} \frac{a+b\cos x+c\sin x}{x^2}; x > 0 \\ 9 ; x \leq 0 \end{cases}$ is contin...

If f(x)={a+bcosx+csinxx2;x>09;x0f(x) = \begin{cases} \frac{a+b\cos x+c\sin x}{x^2}; x > 0 \\ 9 ; x \leq 0 \end{cases} is continuous at x = 0, then the value of a+b5\frac{|a|+|b|}{5}

Answer

36/5

Explanation

Solution

For the function f(x)f(x) to be continuous at x=0x=0, the following condition must be satisfied:

limx0f(x)=limx0+f(x)=f(0)\lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x) = f(0)

From the definition of the function:

  1. f(0)=9f(0) = 9
  2. limx0f(x)=limx09=9\lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} 9 = 9

Now, we must have limx0+f(x)=9\lim_{x \to 0^+} f(x) = 9.

limx0+a+bcosx+csinxx2=9\lim_{x \to 0^+} \frac{a+b\cos x+c\sin x}{x^2} = 9

Let L=limx0+a+bcosx+csinxx2L = \lim_{x \to 0^+} \frac{a+b\cos x+c\sin x}{x^2}.
As x0x \to 0, the denominator x20x^2 \to 0. For the limit LL to be a finite value (9), the numerator must also approach 00. This implies the form 00\frac{0}{0}.

Step 1: Numerator must be 0 at x=0x=0.
Substitute x=0x=0 into the numerator:
a+bcos(0)+csin(0)=0a+b\cos(0)+c\sin(0) = 0
a+b(1)+c(0)=0a+b(1)+c(0) = 0
a+b=0    b=aa+b = 0 \implies b = -a

Now, substitute b=ab=-a into the limit expression:

L=limx0+aacosx+csinxx2=limx0+a(1cosx)+csinxx2L = \lim_{x \to 0^+} \frac{a-a\cos x+c\sin x}{x^2} = \lim_{x \to 0^+} \frac{a(1-\cos x)+c\sin x}{x^2}

This is still of the 00\frac{0}{0} form. We can apply L'Hopital's Rule.

Step 2: Apply L'Hopital's Rule (first time).
Differentiate the numerator and the denominator with respect to xx:

L=limx0+ddx(a(1cosx)+csinx)ddx(x2)=limx0+asinx+ccosx2xL = \lim_{x \to 0^+} \frac{\frac{d}{dx}(a(1-\cos x)+c\sin x)}{\frac{d}{dx}(x^2)} = \lim_{x \to 0^+} \frac{a\sin x+c\cos x}{2x}

Again, as x0x \to 0, the denominator 2x02x \to 0. For LL to be finite, the new numerator must also approach 00.
Substitute x=0x=0 into the new numerator:
asin(0)+ccos(0)=0a\sin(0)+c\cos(0) = 0
a(0)+c(1)=0a(0)+c(1) = 0
c=0c = 0

Now, substitute c=0c=0 into the limit expression:

L=limx0+asinx2xL = \lim_{x \to 0^+} \frac{a\sin x}{2x}

This is still of the 00\frac{0}{0} form. We can apply L'Hopital's Rule again.

Step 3: Apply L'Hopital's Rule (second time).
Differentiate the numerator and the denominator with respect to xx:

L=limx0+ddx(asinx)ddx(2x)=limx0+acosx2L = \lim_{x \to 0^+} \frac{\frac{d}{dx}(a\sin x)}{\frac{d}{dx}(2x)} = \lim_{x \to 0^+} \frac{a\cos x}{2}

Now, substitute x=0x=0:

L=acos(0)2=a(1)2=a2L = \frac{a\cos(0)}{2} = \frac{a(1)}{2} = \frac{a}{2}

We are given that L=9L=9.
So, a2=9    a=18\frac{a}{2} = 9 \implies a = 18.

Step 4: Find the value of bb.
From Step 1, we found b=ab = -a.
So, b=18b = -18.

Step 5: Calculate the required value.
We need to find a+b5\frac{|a|+|b|}{5}.

a+b5=18+185=18+185=365\frac{|a|+|b|}{5} = \frac{|18|+|-18|}{5} = \frac{18+18}{5} = \frac{36}{5}