Solveeit Logo

Question

Question: Let $\overrightarrow{w} = \hat{\imath} + \hat{\jmath} - 2\hat{k}$, and $\overrightarrow{u}$ and $\ov...

Let w=ı^+ȷ^2k^\overrightarrow{w} = \hat{\imath} + \hat{\jmath} - 2\hat{k}, and u\overrightarrow{u} and v\overrightarrow{v} be two vectors, such that u×v=w\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{w} and v×w=u\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{u}. Let α,β,γ\alpha, \beta, \gamma, and tt be real numbers such that

u=αı^+βȷ^+γk^\overrightarrow{u} = \alpha\hat{\imath} + \beta\hat{\jmath} + \gamma\hat{k}, tα+β+γ=0-t\alpha + \beta + \gamma = 0, αtβ+γ=0\alpha - t\beta + \gamma = 0, and α+βtγ=0\alpha + \beta - t\gamma = 0.

Match each entry in List-I to the correct entry in List-II and choose the correct option.

List-I List-II

(P) v2|\overrightarrow{v}|^2 is equal to (1) 0

(Q) If α=3\alpha = \sqrt{3}, then γ2\gamma^2 is equal to (2) 1

(3) 2

(R) If α=3\alpha = \sqrt{3}, then (β+γ)2(\beta + \gamma)^2 is equal to (4) 3

(S) If α=2\alpha = \sqrt{2}, then t+3t + 3 is equal to (5) 5

A

(P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5)

B

(P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (3) (S) \rightarrow (5)

C

(P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (3)

D

(P) \rightarrow (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (3)

Answer

A

Explanation

Solution

First, let's analyze the given vector equations: u×v=w\overrightarrow{u} \times \overrightarrow{v} = \overrightarrow{w} and v×w=u\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{u}.

From the properties of the cross product, w\overrightarrow{w} is orthogonal to both u\overrightarrow{u} and v\overrightarrow{v}. Also, u\overrightarrow{u} is orthogonal to both v\overrightarrow{v} and w\overrightarrow{w}. This implies that u,v,w\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} are mutually orthogonal vectors.

The magnitude of w\overrightarrow{w} is w=ı^+ȷ^2k^=12+12+(2)2=1+1+4=6|\overrightarrow{w}| = |\hat{\imath} + \hat{\jmath} - 2\hat{k}| = \sqrt{1^2 + 1^2 + (-2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6}.

Taking magnitudes of the given vector equations: u×v=w|\overrightarrow{u} \times \overrightarrow{v}| = |\overrightarrow{w}| and v×w=u|\overrightarrow{v} \times \overrightarrow{w}| = |\overrightarrow{u}|. Since u\overrightarrow{u} and v\overrightarrow{v} are orthogonal, u×v=uvsin(90)=uv|\overrightarrow{u} \times \overrightarrow{v}| = |\overrightarrow{u}||\overrightarrow{v}|\sin(90^\circ) = |\overrightarrow{u}||\overrightarrow{v}|. Since v\overrightarrow{v} and w\overrightarrow{w} are orthogonal, v×w=vwsin(90)=vw|\overrightarrow{v} \times \overrightarrow{w}| = |\overrightarrow{v}||\overrightarrow{w}|\sin(90^\circ) = |\overrightarrow{v}||\overrightarrow{w}|. So, we have: uv=w=6|\overrightarrow{u}||\overrightarrow{v}| = |\overrightarrow{w}| = \sqrt{6} vw=u|\overrightarrow{v}||\overrightarrow{w}| = |\overrightarrow{u}| Substitute w=6|\overrightarrow{w}| = \sqrt{6} into the second equation: 6v=u\sqrt{6}|\overrightarrow{v}| = |\overrightarrow{u}|. Substitute this into the first equation: (6v)v=6    6v2=6(\sqrt{6}|\overrightarrow{v}|)|\overrightarrow{v}| = \sqrt{6} \implies \sqrt{6}|\overrightarrow{v}|^2 = \sqrt{6}. This gives v2=1|\overrightarrow{v}|^2 = 1.

(P) v2|\overrightarrow{v}|^2 is equal to 1. So (P) \rightarrow (2).

We are given u=αı^+βȷ^+γk^\overrightarrow{u} = \alpha\hat{\imath} + \beta\hat{\jmath} + \gamma\hat{k} and a system of linear equations for α,β,γ\alpha, \beta, \gamma:

  1. tα+β+γ=0-t\alpha + \beta + \gamma = 0
  2. αtβ+γ=0\alpha - t\beta + \gamma = 0
  3. α+βtγ=0\alpha + \beta - t\gamma = 0 This is a homogeneous system of linear equations. Since u0\overrightarrow{u} \neq \overrightarrow{0} (because u=60|\overrightarrow{u}| = \sqrt{6} \neq 0), the system must have a non-trivial solution. This requires the determinant of the coefficient matrix to be zero: t111t111t=0\begin{vmatrix} -t & 1 & 1 \\ 1 & -t & 1 \\ 1 & 1 & -t \end{vmatrix} = 0 t(t21)1(t1)+1(1+t)=0-t(t^2 - 1) - 1(-t - 1) + 1(1 + t) = 0 t3+t+t+1+1+t=0-t^3 + t + t + 1 + 1 + t = 0 t3+3t+2=0    t33t2=0-t^3 + 3t + 2 = 0 \implies t^3 - 3t - 2 = 0. Factoring the cubic: (t+1)2(t2)=0(t+1)^2(t-2) = 0. The possible values for tt are t=1t=-1 or t=2t=2.

Case 1: t=1t=-1. The system becomes: α+β+γ=0\alpha + \beta + \gamma = 0 α+β+γ=0\alpha + \beta + \gamma = 0 α+β+γ=0\alpha + \beta + \gamma = 0 The condition is α+β+γ=0\alpha + \beta + \gamma = 0. We also know that u\overrightarrow{u} is orthogonal to w=ı^+ȷ^2k^\overrightarrow{w} = \hat{\imath} + \hat{\jmath} - 2\hat{k}. uw=(αı^+βȷ^+γk^)(ı^+ȷ^2k^)=α+β2γ=0\overrightarrow{u} \cdot \overrightarrow{w} = (\alpha\hat{\imath} + \beta\hat{\jmath} + \gamma\hat{k}) \cdot (\hat{\imath} + \hat{\jmath} - 2\hat{k}) = \alpha + \beta - 2\gamma = 0. We have the system: I) α+β+γ=0\alpha + \beta + \gamma = 0 II) α+β2γ=0\alpha + \beta - 2\gamma = 0 Subtracting II from I gives 3γ=0    γ=03\gamma = 0 \implies \gamma = 0. Substituting γ=0\gamma=0 into I gives α+β=0    β=α\alpha + \beta = 0 \implies \beta = -\alpha. So, for t=1t=-1, β=α\beta = -\alpha and γ=0\gamma = 0. The condition u2=6|\overrightarrow{u}|^2 = 6 implies α2+β2+γ2=6\alpha^2 + \beta^2 + \gamma^2 = 6. α2+(α)2+02=6    2α2=6    α2=3\alpha^2 + (-\alpha)^2 + 0^2 = 6 \implies 2\alpha^2 = 6 \implies \alpha^2 = 3.

Case 2: t=2t=2. The system becomes: 2α+β+γ=0-2\alpha + \beta + \gamma = 0 α2β+γ=0\alpha - 2\beta + \gamma = 0 α+β2γ=0\alpha + \beta - 2\gamma = 0 From the first two equations: (2α+β+γ)(α2β+γ)=0    3α+3β=0    α=β(-2\alpha + \beta + \gamma) - (\alpha - 2\beta + \gamma) = 0 \implies -3\alpha + 3\beta = 0 \implies \alpha = \beta. From the second and third equations: (α2β+γ)(α+β2γ)=0    3β+3γ=0    β=γ(\alpha - 2\beta + \gamma) - (\alpha + \beta - 2\gamma) = 0 \implies -3\beta + 3\gamma = 0 \implies \beta = \gamma. So, for t=2t=2, α=β=γ\alpha = \beta = \gamma. The condition u2=6|\overrightarrow{u}|^2 = 6 implies α2+β2+γ2=6\alpha^2 + \beta^2 + \gamma^2 = 6. α2+α2+α2=6    3α2=6    α2=2\alpha^2 + \alpha^2 + \alpha^2 = 6 \implies 3\alpha^2 = 6 \implies \alpha^2 = 2. This is consistent with uw=α+β2γ=α+α2α=0\overrightarrow{u} \cdot \overrightarrow{w} = \alpha + \beta - 2\gamma = \alpha + \alpha - 2\alpha = 0.

Now we evaluate the expressions in List-I based on these findings.

(P) v2|\overrightarrow{v}|^2: We found v2=1|\overrightarrow{v}|^2 = 1. Matches (2).

(Q) If α=3\alpha = \sqrt{3}, then γ2\gamma^2 is equal to. If α=3\alpha = \sqrt{3}, then α2=3\alpha^2 = 3. This occurs when t=1t=-1. In this case, γ=0\gamma = 0. So γ2=02=0\gamma^2 = 0^2 = 0. Matches (1).

(R) If α=3\alpha = \sqrt{3}, then (β+γ)2(\beta + \gamma)^2 is equal to. If α=3\alpha = \sqrt{3}, then this is the case t=1t=-1, where β=α\beta = -\alpha and γ=0\gamma = 0. β=3\beta = -\sqrt{3} and γ=0\gamma = 0. (β+γ)2=(3+0)2=(3)2=3(\beta + \gamma)^2 = (-\sqrt{3} + 0)^2 = (-\sqrt{3})^2 = 3. Matches (4).

(S) If α=2\alpha = \sqrt{2}, then t+3t + 3 is equal to. If α=2\alpha = \sqrt{2}, then α2=2\alpha^2 = 2. This occurs when t=2t=2. So t=2t=2. t+3=2+3=5t + 3 = 2 + 3 = 5. Matches (5).

Summary of matches: (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5)

Let's check the options provided. (A) (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (5) - This matches our results. (B) (P) \rightarrow (2) (Q) \rightarrow (4) (R) \rightarrow (3) (S) \rightarrow (5) - Incorrect. (C) (P) \rightarrow (2) (Q) \rightarrow (1) (R) \rightarrow (4) (S) \rightarrow (3) - Incorrect. (D) (P) \rightarrow (5) (Q) \rightarrow (4) (R) \rightarrow (1) (S) \rightarrow (3) - Incorrect.

The correct option is (A).