Solveeit Logo

Question

Question: Calculate the velocity of the centre of mass of the system of particle shown in figure....

Calculate the velocity of the centre of mass of the system of particle shown in figure.

Answer

(0.8 \hat{i} - 0.1 \hat{j}) m/s

Explanation

Solution

To calculate the velocity of the center of mass of the system, we use the formula:

VCM=mivimi\vec{V}_{CM} = \frac{\sum m_i \vec{v}_i}{\sum m_i}

First, let's identify the mass (mim_i) and velocity vector (vi\vec{v}_i) for each particle. We'll set up a coordinate system where the positive x-axis is to the right and the positive y-axis is upwards. We'll use the standard approximations: sin370.6\sin 37^\circ \approx 0.6 and cos370.8\cos 37^\circ \approx 0.8.

Particle 1:

  • Mass m1=4.0kgm_1 = 4.0 \, \text{kg}
  • Velocity v1=2.5m/sv_1 = 2.5 \, \text{m/s} vertically upwards.
  • v1=(0i^+2.5j^)m/s\vec{v}_1 = (0 \, \hat{i} + 2.5 \, \hat{j}) \, \text{m/s}
  • m1v1=4.0kg×(0i^+2.5j^)m/s=(0i^+10.0j^)kgm/sm_1 \vec{v}_1 = 4.0 \, \text{kg} \times (0 \, \hat{i} + 2.5 \, \hat{j}) \, \text{m/s} = (0 \, \hat{i} + 10.0 \, \hat{j}) \, \text{kg} \cdot \text{m/s}

Particle 2:

  • Mass m2=6.0kgm_2 = 6.0 \, \text{kg}
  • Velocity v2=5.0m/sv_2 = 5.0 \, \text{m/s} at an angle of 3737^\circ below the horizontal, moving to the right.
  • The x-component of velocity: v2x=v2cos37=5.0×0.8=4.0m/sv_{2x} = v_2 \cos 37^\circ = 5.0 \times 0.8 = 4.0 \, \text{m/s}
  • The y-component of velocity: v2y=v2sin37=5.0×0.6=3.0m/sv_{2y} = -v_2 \sin 37^\circ = -5.0 \times 0.6 = -3.0 \, \text{m/s} (negative because it's downwards)
  • v2=(4.0i^3.0j^)m/s\vec{v}_2 = (4.0 \, \hat{i} - 3.0 \, \hat{j}) \, \text{m/s}
  • m2v2=6.0kg×(4.0i^3.0j^)m/s=(24.0i^18.0j^)kgm/sm_2 \vec{v}_2 = 6.0 \, \text{kg} \times (4.0 \, \hat{i} - 3.0 \, \hat{j}) \, \text{m/s} = (24.0 \, \hat{i} - 18.0 \, \hat{j}) \, \text{kg} \cdot \text{m/s}

Particle 3:

  • Mass m3=10.0kgm_3 = 10.0 \, \text{kg}
  • Velocity v3=1.0m/sv_3 = 1.0 \, \text{m/s} at an angle of 3737^\circ above the horizontal, moving to the left.
  • The x-component of velocity: v3x=v3cos37=1.0×0.8=0.8m/sv_{3x} = -v_3 \cos 37^\circ = -1.0 \times 0.8 = -0.8 \, \text{m/s} (negative because it's to the left)
  • The y-component of velocity: v3y=v3sin37=1.0×0.6=0.6m/sv_{3y} = v_3 \sin 37^\circ = 1.0 \times 0.6 = 0.6 \, \text{m/s}
  • v3=(0.8i^+0.6j^)m/s\vec{v}_3 = (-0.8 \, \hat{i} + 0.6 \, \hat{j}) \, \text{m/s}
  • m3v3=10.0kg×(0.8i^+0.6j^)m/s=(8.0i^+6.0j^)kgm/sm_3 \vec{v}_3 = 10.0 \, \text{kg} \times (-0.8 \, \hat{i} + 0.6 \, \hat{j}) \, \text{m/s} = (-8.0 \, \hat{i} + 6.0 \, \hat{j}) \, \text{kg} \cdot \text{m/s}

Next, calculate the total mass of the system: M=m1+m2+m3=4.0kg+6.0kg+10.0kg=20.0kgM = m_1 + m_2 + m_3 = 4.0 \, \text{kg} + 6.0 \, \text{kg} + 10.0 \, \text{kg} = 20.0 \, \text{kg}

Now, sum the momentum vectors (mivi\sum m_i \vec{v}_i): mivi=(0i^+10.0j^)+(24.0i^18.0j^)+(8.0i^+6.0j^)\sum m_i \vec{v}_i = (0 \, \hat{i} + 10.0 \, \hat{j}) + (24.0 \, \hat{i} - 18.0 \, \hat{j}) + (-8.0 \, \hat{i} + 6.0 \, \hat{j}) Summing the x-components: 0+24.08.0=16.0kgm/s0 + 24.0 - 8.0 = 16.0 \, \text{kg} \cdot \text{m/s} Summing the y-components: 10.018.0+6.0=2.0kgm/s10.0 - 18.0 + 6.0 = -2.0 \, \text{kg} \cdot \text{m/s} So, mivi=(16.0i^2.0j^)kgm/s\sum m_i \vec{v}_i = (16.0 \, \hat{i} - 2.0 \, \hat{j}) \, \text{kg} \cdot \text{m/s}

Finally, calculate the velocity of the center of mass: VCM=(16.0i^2.0j^)kgm/s20.0kg\vec{V}_{CM} = \frac{(16.0 \, \hat{i} - 2.0 \, \hat{j}) \, \text{kg} \cdot \text{m/s}}{20.0 \, \text{kg}} VCM=(16.020.0)i^(2.020.0)j^\vec{V}_{CM} = \left(\frac{16.0}{20.0}\right) \, \hat{i} - \left(\frac{2.0}{20.0}\right) \, \hat{j} VCM=(0.8i^0.1j^)m/s\vec{V}_{CM} = (0.8 \, \hat{i} - 0.1 \, \hat{j}) \, \text{m/s}

The velocity of the center of mass of the system is VCM=(0.8i^0.1j^)m/s\vec{V}_{CM} = (0.8 \, \hat{i} - 0.1 \, \hat{j}) \, \text{m/s}.