Question
Question: Calculate the velocity of the centre of mass of the system of particle shown in figure....
Calculate the velocity of the centre of mass of the system of particle shown in figure.

(0.8 \hat{i} - 0.1 \hat{j}) m/s
Solution
To calculate the velocity of the center of mass of the system, we use the formula:
VCM=∑mi∑mivi
First, let's identify the mass (mi) and velocity vector (vi) for each particle. We'll set up a coordinate system where the positive x-axis is to the right and the positive y-axis is upwards. We'll use the standard approximations: sin37∘≈0.6 and cos37∘≈0.8.
Particle 1:
- Mass m1=4.0kg
- Velocity v1=2.5m/s vertically upwards.
- v1=(0i^+2.5j^)m/s
- m1v1=4.0kg×(0i^+2.5j^)m/s=(0i^+10.0j^)kg⋅m/s
Particle 2:
- Mass m2=6.0kg
- Velocity v2=5.0m/s at an angle of 37∘ below the horizontal, moving to the right.
- The x-component of velocity: v2x=v2cos37∘=5.0×0.8=4.0m/s
- The y-component of velocity: v2y=−v2sin37∘=−5.0×0.6=−3.0m/s (negative because it's downwards)
- v2=(4.0i^−3.0j^)m/s
- m2v2=6.0kg×(4.0i^−3.0j^)m/s=(24.0i^−18.0j^)kg⋅m/s
Particle 3:
- Mass m3=10.0kg
- Velocity v3=1.0m/s at an angle of 37∘ above the horizontal, moving to the left.
- The x-component of velocity: v3x=−v3cos37∘=−1.0×0.8=−0.8m/s (negative because it's to the left)
- The y-component of velocity: v3y=v3sin37∘=1.0×0.6=0.6m/s
- v3=(−0.8i^+0.6j^)m/s
- m3v3=10.0kg×(−0.8i^+0.6j^)m/s=(−8.0i^+6.0j^)kg⋅m/s
Next, calculate the total mass of the system: M=m1+m2+m3=4.0kg+6.0kg+10.0kg=20.0kg
Now, sum the momentum vectors (∑mivi): ∑mivi=(0i^+10.0j^)+(24.0i^−18.0j^)+(−8.0i^+6.0j^) Summing the x-components: 0+24.0−8.0=16.0kg⋅m/s Summing the y-components: 10.0−18.0+6.0=−2.0kg⋅m/s So, ∑mivi=(16.0i^−2.0j^)kg⋅m/s
Finally, calculate the velocity of the center of mass: VCM=20.0kg(16.0i^−2.0j^)kg⋅m/s VCM=(20.016.0)i^−(20.02.0)j^ VCM=(0.8i^−0.1j^)m/s
The velocity of the center of mass of the system is VCM=(0.8i^−0.1j^)m/s.