Solveeit Logo

Question

Mathematics Question on Ellipse

Eccentricity of the ellipse 4x2+y28x+4y8=04x^2 + y^2 -8x + 4y -8= 0 is

A

32\frac{\sqrt{3}}{2}

B

34\frac{\sqrt{3}}{4}

C

32\frac{\sqrt{3}}{\sqrt{2}}

D

38\frac{\sqrt{3}}{8}

Answer

32\frac{\sqrt{3}}{2}

Explanation

Solution

Equation 4x2+y28x+4y8=04 x^{2}+y^{2}-8 x+4 y-8=0 is an ellipse. 4(x1)2+(y+2)288=0\Rightarrow 4(x-1)^{2}+(y+2)^{2}-8-8=0 =4(x1)2+(y+2)2=16=4(x-1)^{2}+(y+2)^{2}=16 =(x1)24+(y+2)216=1=\frac{(x-1)^{2}}{4}+\frac{(y+2)^{2}}{16}=1, where b>ab >a \therefore Eccentricity (e)=1a2b2(e)=\sqrt{1-\frac{a^{2}}{b^{2}}} =1416=1216=32=\sqrt{1-\frac{4}{16}}=\sqrt{\frac{12}{16}}=\frac{\sqrt{3}}{2}