Solveeit Logo

Question

Question: Eccentric angle of a point on the ellipse \[{{x}^{2}}+3{{y}^{2}}=6\]at a distance \[2\]units from th...

Eccentric angle of a point on the ellipse x2+3y2=6{{x}^{2}}+3{{y}^{2}}=6at a distance 22units from the center of the ellipse is :
(A) π4\dfrac{\pi }{4}
(B) π3\dfrac{\pi }{3}
(C) 3π4\dfrac{3\pi }{4}
(D) 2π3\dfrac{2\pi }{3}

Explanation

Solution

Hint: Find out the center of the given ellipse and consider a parametric point. Later, Equate the distance between the parametric point and center of the ellipse to 2 units.

For, any given ellipse, x2a2+y2b2=1\dfrac{{{x}^{2}}}{{{a}^{2}}}+\dfrac{{{y}^{2}}}{{{b}^{2}}}=1, the eccentric angle θ\theta is related as:
x=acosθ;x=a\cos \theta ;
y=bsinθ;y=b\sin \theta ;
The given ellipse equation is: x26+y22=1.\dfrac{{{x}^{2}}}{6}+\dfrac{{{y}^{2}}}{2}=1.
So, here we will have a=6a=\sqrt{6} and b=2b=\sqrt{2};
And, x=6cosθ;y=2sinθx=\sqrt{6}\cos \theta ;y=\sqrt{2}\sin \theta
Now, the distance between the center(0,0)\left( 0,0 \right) and the point (6cosθ,2sinθ)\left( \sqrt{6}\cos \theta ,\sqrt{2}\sin \theta \right) on ellipse is given as 2 units.
Therefore, 2=(6cosθ0)2+(2sinθ0)22=\sqrt{{{\left( \sqrt{6}\cos \theta -0 \right)}^{2}}+{{\left( \sqrt{2}\sin \theta -0 \right)}^{2}}}
Squaring on both sides, we will get:
22=6cos2θ+2sin2θ{{2}^{2}}=6{{\cos }^{2}}\theta +2{{\sin }^{2}}\theta
Now, substituting sin2θ=1cos2θ{{\sin }^{2}}\theta =1-{{\cos }^{2}}\theta , we will have:
4=4cos2θ+24=4{{\cos }^{2}}\theta +2
We get, cos2θ=12{{\cos }^{2}}\theta =\dfrac{1}{2}
cosθ=±12\to \cos \theta =\pm \dfrac{1}{\sqrt{2}}.
Therefore, θ=(2n+1)π4,nz\theta =\left( 2n+1 \right)\dfrac{\pi }{4},n\in z
So, the value of θ\theta is either π4or3π4\dfrac{\pi }{4}or\dfrac{3\pi }{4}.
Hence, option A and C are correct

Note: We have to make sure that you consider the both positive and negative values of cosθ\cos \theta after applying the square root every time. Remember that the general solution of Cosine trigonometric function is θ=(2n+1)π4,nz\theta =\left( 2n+1 \right)\dfrac{\pi }{4},n\in z.