Solveeit Logo

Question

Question: Each pair of equations from x<sup>2</sup> – b<sub>r</sub>x + c<sub>r</sub> = 0, r = 1, 2, 3 have a c...

Each pair of equations from x2 – brx + cr = 0, r = 1, 2, 3 have a common root and the relation is given Σb12b_{1}^{2} + 4 Σc1 = k Σb1b2 then value of k is –

A

1

B

2

C

3

D

4

Answer

2

Explanation

Solution

Equations x2 – b1 x + c1 = 0 roots α,β

x2 – b2 x + c2 = 0 roots α,γ

x2 – b3 x + c3 = 0 roots β,γ

∴ α + β = b1, αβ = c1 

α + γ = b2, αγ = c2

β + γ = b3, βγ = c3

L.H.S  = b12b_{1}^{2}+ b22b_{2}^{2} + b32b_{3}^{2}+ 4(c1 + c2 + c3)

= (α + β)2 + (α + γ)2 + (β + γ)2 + 4 (αβ +βγ + αγ)

= 2[α2 + β2 + γ2 + 3(αβ +βγ + αγ)]

R.H.S = k[b1b2 + b2b3 + b3b1]

= 2(α + β) (α + γ) + (α + γ) (β +γ) +(β + γ)(α + β)

= 2[α2 + β2 + γ2 + 3(αβ +βγ + αγ)]

⇒ k = 2