Solveeit Logo

Question

Physics Question on Magnetism and matter

Each atom of an iron bar (5cm×1cm×1cm)(5\, cm \times 1\, cm \times 1\, cm ) has a magnetic moment 1.8×1023Am21.8 \times 10^{-23}\, Am ^{2}. Knowing that the density of iron is 7.78×103kgm37.78 \times 10^{3}\, kg\, m ^{-3}, atomic weight is 5656 and Avogadro's number is 6.02×10236.02 \times 10^{23} the magnetic moment of bar in the state of magnetic saturation will be

A

4.75Am24.75\,Am^{2}

B

5.74Am25.74\,Am^{2}

C

7.54Am27.54\,Am^{2}

D

75.4Am275.4\,Am^{2}

Answer

7.54Am27.54\,Am^{2}

Explanation

Solution

The number of atoms per unit volume in a specimen,
n=ρNAAn=\frac{\rho N_{A}}{A}
For iron,
ρ=7.8×103kgm3\rho=7.8 \times 10^{3} \,kgm ^{-3}
NA=6.02×1026/kgmol,A=56N_{A}=6.02 \times 10^{26} / kg \,mol , A=56
n=7.8×103×6.02×102656\Rightarrow n=\frac{7.8 \times 10^{3} \times 6.02 \times 10^{26}}{56}
n=8.38×1028m3n=8.38 \times 10^{28} \,m ^{-3}
Total number of atoms in the bar is
N0=nV=8.38×1028×(5×102×1×102×1×102)N_{0}=n V=8.38 \times 10^{28}\times\left(5 \times 10^{-2} \times 1 \times 10^{-2} \times 1 \times 10^{-2}\right)
N0=4.19×1023N_{0}=4.19 \times 10^{23}
The saturated magnetic moment of bar
=4.19×1023×1.8×1023=7.54Am2=4.19 \times 10^{23} \times 1.8 \times 10^{-23}=7.54 \,Am ^{2}