Solveeit Logo

Question

Question: $E_{Pb/Pb^{+2}}^{0} = -2\ V$ $E_{Pb^{+4}/Pb^{+2}}^{0} = -4\ V$ $E_{Pb/Pb^{+4}}^{0} = ?$...

EPb/Pb+20=2 VE_{Pb/Pb^{+2}}^{0} = -2\ V

EPb+4/Pb+20=4 VE_{Pb^{+4}/Pb^{+2}}^{0} = -4\ V

EPb/Pb+40=?E_{Pb/Pb^{+4}}^{0} = ?

Answer

3 V

Explanation

Solution

To solve this problem, we need to use the relationship between standard electrode potential (E0E^0) and Gibbs free energy (ΔG0\Delta G^0), which is given by the formula:

ΔG0=nFE0\Delta G^0 = -nFE^0

where nn is the number of electrons transferred in the reaction and FF is Faraday's constant. Since FF is a constant, we can essentially work with nE0nE^0 values.

Standard electrode potentials are conventionally given as standard reduction potentials. Let's interpret the given potentials accordingly:

  1. EPb/Pb+20=2 VE_{Pb/Pb^{+2}}^{0} = -2\ V: This notation refers to the reduction potential for the half-reaction Pb+2+2ePbPb^{+2} + 2e^- \rightarrow Pb.

    Reaction (1): Pb+2+2ePbPb^{+2} + 2e^- \rightarrow Pb

    E10=2 VE^0_1 = -2\ V

    n1=2n_1 = 2

    ΔG10=n1FE10=(2)F(2)=4F\Delta G^0_1 = -n_1FE^0_1 = -(2)F(-2) = 4F

  2. EPb+4/Pb+20=4 VE_{Pb^{+4}/Pb^{+2}}^{0} = -4\ V: This notation refers to the reduction potential for the half-reaction Pb+4+2ePb+2Pb^{+4} + 2e^- \rightarrow Pb^{+2}.

    Reaction (2): Pb+4+2ePb+2Pb^{+4} + 2e^- \rightarrow Pb^{+2}

    E20=4 VE^0_2 = -4\ V

    n2=2n_2 = 2

    ΔG20=n2FE20=(2)F(4)=8F\Delta G^0_2 = -n_2FE^0_2 = -(2)F(-4) = 8F

We need to find EPb/Pb+40E_{Pb/Pb^{+4}}^{0}. This refers to the standard oxidation potential for the reaction PbPb+4+4ePb \rightarrow Pb^{+4} + 4e^-. To find this, first, let's find the standard reduction potential for the corresponding reduction reaction: Pb+4+4ePbPb^{+4} + 4e^- \rightarrow Pb. Let's call this Reaction (3).

Reaction (3): Pb+4+4ePbPb^{+4} + 4e^- \rightarrow Pb

n3=4n_3 = 4

ΔG30=n3FE30=(4)FE30\Delta G^0_3 = -n_3FE^0_3 = -(4)FE^0_3

We can obtain Reaction (3) by adding Reaction (1) and Reaction (2):

(Pb+2+2ePb)+(Pb+4+2ePb+2)(Pb^{+2} + 2e^- \rightarrow Pb) + (Pb^{+4} + 2e^- \rightarrow Pb^{+2})

Summing these gives: Pb+4+4ePbPb^{+4} + 4e^- \rightarrow Pb

Since Gibbs free energy is an extensive property, the ΔG0\Delta G^0 for the combined reaction is the sum of the ΔG0\Delta G^0 values of the individual reactions:

ΔG30=ΔG10+ΔG20\Delta G^0_3 = \Delta G^0_1 + \Delta G^0_2

ΔG30=4F+8F=12F\Delta G^0_3 = 4F + 8F = 12F

Now, substitute this value into the equation for ΔG30\Delta G^0_3:

12F=(4)FE3012F = -(4)FE^0_3

Divide both sides by FF:

12=4E3012 = -4E^0_3

E30=124=3 VE^0_3 = \frac{12}{-4} = -3\ V

This value, E30=3 VE^0_3 = -3\ V, is the standard reduction potential for Pb+4/PbPb^{+4}/Pb, i.e., EPb+4/Pb0=3 VE_{Pb^{+4}/Pb}^{0} = -3\ V.

The question asks for EPb/Pb+40E_{Pb/Pb^{+4}}^{0}, which is the standard oxidation potential for PbPb+4+4ePb \rightarrow Pb^{+4} + 4e^-. The standard oxidation potential is the negative of the standard reduction potential:

EPb/Pb+40=EPb+4/Pb0E_{Pb/Pb^{+4}}^{0} = -E_{Pb^{+4}/Pb}^{0}

EPb/Pb+40=(3 V)=3 VE_{Pb/Pb^{+4}}^{0} = -(-3\ V) = 3\ V