Solveeit Logo

Question

Question: \(e^{2mi\cot^{- 1}p}\)·\(\left( \frac{pi + 1}{pi - 1} \right)^{m}\)=...

e2micot1pe^{2mi\cot^{- 1}p}·(pi+1pi1)m\left( \frac{pi + 1}{pi - 1} \right)^{m}=

A

0

B

1

C

–1

D

None of these

Answer

1

Explanation

Solution

Sol. Let cot–1 p = q, then p = cot q

\ e2micot1pe^{2mi\cot^{- 1}p}· (pi+1pi1)m\left( \frac{pi + 1}{pi - 1} \right)^{m}

= ·(icotθ+1icotθ1)m\left( \frac{i\cot\theta + 1}{i\cot\theta - 1} \right)^{m}

=(i(cotθi)i(cotθ+i))m\left( \frac{i(\cot\theta - i)}{i(\cot\theta + i)} \right)^{m}

=· (cotθicotθ+i)m\left( \frac{\cot\theta - i}{\cot\theta + i} \right)^{m}

= · (cosθisinθcosθ+isinθ)m\left( \frac{\cos\theta - i\sin\theta}{\cos\theta + i\sin\theta} \right)^{m}

= · (eiθeiθ)m\left( \frac{e^{- i\theta}}{e^{i\theta}} \right)^{m}

= e2miq (e–2iq)m = e0 = 1.