Solveeit Logo

Question

Mathematics Question on integral

exsecx(1+tanx)dx∫e^x secx(1+tanx)dx equals

A

excosx+Ce^xcosx+C

B

exsecx+Ce^xsecx+C

C

exsinx+Ce^xsinx+C

D

extanx+Ce^xtanx+C

Answer

excosx+Ce^xcosx+C

Explanation

Solution

The correct answer isB: I=exsecx+CI=e^xsecx+C
exsecx(1+tanx)dx∫e^x secx(1+tanx)dx
Let I=exsecx(1+tanx)dx=ex(secx+secxtanx)dxI=∫e^xsecx(1+tanx)dx=∫e^x(secx+secx\,tanx)dx
Also,let secx=ƒ(x)secxtanx=ƒ(x)secx=ƒ(x)\,\,secx\,tanx=ƒ'(x)
It is known that,ex[ƒ(x)+ƒ(x)]dx=exƒ(x)+C∫e^x[ƒ(x)+ƒ'(x)]dx=e^xƒ(x)+C
I=exsecx+C∴I=e^xsecx+C
Hence,the correct answer is B.