Solveeit Logo

Question

Question: $\sin^{-1}\left(\sin\frac{2\pi}{3}\right) + \cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \tan^{-1}\lef...

sin1(sin2π3)+cos1(cos7π6)+tan1(tan3π4)\sin^{-1}\left(\sin\frac{2\pi}{3}\right) + \cos^{-1}\left(\cos\frac{7\pi}{6}\right) + \tan^{-1}\left(\tan\frac{3\pi}{4}\right) is equal to [2022]

A

11π12\frac{11\pi}{12}

B

17π12\frac{17\pi}{12}

C

31π12\frac{31\pi}{12}

D

3π4-\frac{3\pi}{4}

Answer

11π12\frac{11\pi}{12}

Explanation

Solution

  1. Evaluate each term:

    • sin1(sin(2π/3))\sin^{-1}(\sin(2\pi/3)):
      Since the range of sin1\sin^{-1} is [π/2,π/2][-\pi/2, \pi/2] and 2π/32\pi/3 is outside this range, we use the identity:
      sin(2π/3)=sin(π2π/3)=sin(π/3)\sin(2\pi/3) = \sin(\pi - 2\pi/3) = \sin(\pi/3).
      Hence, sin1(sin(2π/3))=π/3\sin^{-1}(\sin(2\pi/3)) = \pi/3.
    • cos1(cos(7π/6))\cos^{-1}(\cos(7\pi/6)):
      The range of cos1\cos^{-1} is [0,π][0,\pi].
      Since cos(7π/6)=cos(π+π/6)=cos(π/6)\cos(7\pi/6) = \cos(π + π/6) = -\cos(π/6), the angle in [0,π][0,\pi] with cosine cos(π/6)-\cos(π/6) is 5π/65\pi/6.
      Thus, cos1(cos(7π/6))=5π/6\cos^{-1}(\cos(7\pi/6)) = 5\pi/6.
    • tan1(tan(3π/4))\tan^{-1}(\tan(3\pi/4)):
      The range of tan1\tan^{-1} is (π/2,π/2)(-\pi/2,\pi/2).
      Note that tan(3π/4)=tan(ππ/4)=tan(π/4)=1\tan(3\pi/4) = \tan(\pi - \pi/4) = -\tan(\pi/4) = -1.
      So, tan1(tan(3π/4))=π/4\tan^{-1}(\tan(3\pi/4)) = -\pi/4.
  2. Sum the results:

    π/3+5π/6π/4=4π12+10π123π12=11π12.\pi/3 + 5\pi/6 - \pi/4 = \frac{4\pi}{12} + \frac{10\pi}{12} - \frac{3\pi}{12} = \frac{11\pi}{12}.