Solveeit Logo

Question

Question: e e (7) - log base e (49)/(22) + log base e (343)/(32)....upto infini...

e e (7) - log base e (49)/(22) + log base e (343)/(32)....upto infini

Answer

loge(7)e\frac{\log_e(7)}{e}

Explanation

Solution

The given series is: S=e e (7)loge(49)2!+loge(343)3!upto infinityS = \text{e e (7)} - \frac{\log_e(49)}{2!} + \frac{\log_e(343)}{3!} - \dots \text{upto infinity}

Let's analyze the terms of the series. The numbers inside the logarithm are powers of 7: 71=77^1=7, 72=497^2=49, 73=3437^3=343. The denominators are factorials: 2!,3!2!, 3!. The signs are alternating, starting with positive, then negative, then positive.

Let's assume the first term "e e (7)" is a typo and it should be loge(7)\log_e(7). This makes the series follow a consistent pattern. If the series starts from n=1n=1, the general term can be written as Tn=(1)n+1loge(7n)n!T_n = (-1)^{n+1} \frac{\log_e(7^n)}{n!}.

Let's verify the terms with this assumption: For n=1n=1: T1=(1)1+1loge(71)1!=loge(7)1!=loge(7)T_1 = (-1)^{1+1} \frac{\log_e(7^1)}{1!} = \frac{\log_e(7)}{1!} = \log_e(7). This matches our assumption for the first term. For n=2n=2: T2=(1)2+1loge(72)2!=loge(49)2!T_2 = (-1)^{2+1} \frac{\log_e(7^2)}{2!} = -\frac{\log_e(49)}{2!}. This matches the second term given in the question. For n=3n=3: T3=(1)3+1loge(73)3!=+loge(343)3!T_3 = (-1)^{3+1} \frac{\log_e(7^3)}{3!} = +\frac{\log_e(343)}{3!}. This matches the third term given in the question.

So, the series can be written as: S=n=1(1)n+1loge(7n)n!S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{\log_e(7^n)}{n!}

Now, we use the logarithm property loge(ab)=bloge(a)\log_e(a^b) = b \log_e(a): S=n=1(1)n+1nloge(7)n!S = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n \log_e(7)}{n!}

Factor out loge(7)\log_e(7) from the summation: S=loge(7)n=1(1)n+1nn!S = \log_e(7) \sum_{n=1}^{\infty} (-1)^{n+1} \frac{n}{n!}

Simplify the term nn!\frac{n}{n!}: nn!=nn×(n1)!=1(n1)!\frac{n}{n!} = \frac{n}{n \times (n-1)!} = \frac{1}{(n-1)!}

Substitute this back into the series: S=loge(7)n=1(1)n+11(n1)!S = \log_e(7) \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(n-1)!}

Let's write out the terms of the summation: For n=1n=1: (1)1+11(11)!=(1)210!=1×11=1(-1)^{1+1} \frac{1}{(1-1)!} = (-1)^2 \frac{1}{0!} = 1 \times \frac{1}{1} = 1 For n=2n=2: (1)2+11(21)!=(1)311!=1×11=1(-1)^{2+1} \frac{1}{(2-1)!} = (-1)^3 \frac{1}{1!} = -1 \times \frac{1}{1} = -1 For n=3n=3: (1)3+11(31)!=(1)412!=1×12=12!(-1)^{3+1} \frac{1}{(3-1)!} = (-1)^4 \frac{1}{2!} = 1 \times \frac{1}{2} = \frac{1}{2!} For n=4n=4: (1)4+11(41)!=(1)513!=1×16=13!(-1)^{4+1} \frac{1}{(4-1)!} = (-1)^5 \frac{1}{3!} = -1 \times \frac{1}{6} = -\frac{1}{3!}

So the summation part is: n=1(1)n+11(n1)!=11+12!13!+14!\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(n-1)!} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots

We know the Maclaurin series expansion for exe^x: ex=1+x+x22!+x33!+x44!+e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots For x=1x = -1: e1=1+(1)+(1)22!+(1)33!+(1)44!+e^{-1} = 1 + (-1) + \frac{(-1)^2}{2!} + \frac{(-1)^3}{3!} + \frac{(-1)^4}{4!} + \dots e1=11+12!13!+14!e^{-1} = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \frac{1}{4!} - \dots

Comparing this with the summation part of our series, we see that: n=1(1)n+11(n1)!=e1\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{(n-1)!} = e^{-1}

Substitute this back into the expression for SS: S=loge(7)e1S = \log_e(7) \cdot e^{-1} S=loge(7)eS = \frac{\log_e(7)}{e}

The final answer is loge(7)e\boxed{\frac{\log_e(7)}{e}}.