Question
Question: If $\frac{loga}{b-c} = \frac{logb}{c-a} = \frac{logc}{a-b}$, show that $a^a.b^b.c^c=1$....
If b−cloga=c−alogb=a−blogc, show that aa.bb.cc=1.

a^a.b^b.c^c=1
Solution
Let the given ratios be equal to a constant k.
b−cloga=c−alogb=a−blogc=k
From this equality, we can write:
loga=k(b−c)
logb=k(c−a)
logc=k(a−b)
We want to show that aa.bb.cc=1.
Consider the logarithm of the expression aa.bb.cc. Let the base of the logarithm be B.
logB(aa.bb.cc)
Using logarithm properties, log(xy)=logx+logy and log(xn)=nlogx:
logB(aa.bb.cc)=logB(aa)+logB(bb)+logB(cc)
logB(aa.bb.cc)=alogBa+blogBb+clogBc
Substitute the expressions for logBa, logBb, and logBc in terms of k:
alogBa=a[k(b−c)]=ka(b−c)=k(ab−ac)
blogBb=b[k(c−a)]=kb(c−a)=k(bc−ab)
clogBc=c[k(a−b)]=kc(a−b)=k(ca−cb)
Now, sum these three terms:
alogBa+blogBb+clogBc=k(ab−ac)+k(bc−ab)+k(ca−cb)
Factor out k:
alogBa+blogBb+clogBc=k[(ab−ac)+(bc−ab)+(ca−cb)]
alogBa+blogBb+clogBc=k[ab−ac+bc−ab+ca−cb]
The terms inside the square brackets cancel out:
ab−ab=0
−ac+ca=0
bc−cb=0
So, the sum is 0.
alogBa+blogBb+clogBc=k[0]=0
Thus, we have logB(aa.bb.cc)=0.
For the logarithm of a number to be 0 (with a valid base B>0,B=1), the number must be 1.
aa.bb.cc=B0=1.
Therefore, aa.bb.cc=1.
Alternatively, using the property of equal ratios:
If y1x1=y2x2=y3x3=k, then ly1+my2+ny3lx1+mx2+nx3=k for any multipliers l,m,n.
Here, x1=loga, y1=b−c, x2=logb, y2=c−a, x3=logc, y3=a−b.
Let's choose l=a, m=b, n=c.
Then k=a(b−c)+b(c−a)+c(a−b)a(loga)+b(logb)+c(logc).
The denominator is a(b−c)+b(c−a)+c(a−b)=ab−ac+bc−ab+ca−cb=0.
So, k=0aloga+blogb+clogc.
For k to be a finite value (which is implied by the given condition for distinct a,b,c), the numerator must be zero.
aloga+blogb+clogc=0.
Using logarithm properties, this is log(aa)+log(bb)+log(cc)=log(aabbcc)=0.
Let the base be B. logB(aabbcc)=0.
This implies aabbcc=B0=1.