Solveeit Logo

Question

Question: If $\frac{loga}{b-c} = \frac{logb}{c-a} = \frac{logc}{a-b}$, show that $a^a.b^b.c^c=1$....

If logabc=logbca=logcab\frac{loga}{b-c} = \frac{logb}{c-a} = \frac{logc}{a-b}, show that aa.bb.cc=1a^a.b^b.c^c=1.

Answer

a^a.b^b.c^c=1

Explanation

Solution

Let the given ratios be equal to a constant kk.

logabc=logbca=logcab=k\frac{loga}{b-c} = \frac{logb}{c-a} = \frac{logc}{a-b} = k

From this equality, we can write:

loga=k(bc)loga = k(b-c)

logb=k(ca)logb = k(c-a)

logc=k(ab)logc = k(a-b)

We want to show that aa.bb.cc=1a^a.b^b.c^c=1.
Consider the logarithm of the expression aa.bb.cca^a.b^b.c^c. Let the base of the logarithm be BB.

logB(aa.bb.cc)log_B(a^a.b^b.c^c)

Using logarithm properties, log(xy)=logx+logylog(xy) = logx + logy and log(xn)=nlogxlog(x^n) = n logx:

logB(aa.bb.cc)=logB(aa)+logB(bb)+logB(cc)log_B(a^a.b^b.c^c) = log_B(a^a) + log_B(b^b) + log_B(c^c)

logB(aa.bb.cc)=alogBa+blogBb+clogBclog_B(a^a.b^b.c^c) = a log_B a + b log_B b + c log_B c

Substitute the expressions for logBalog_B a, logBblog_B b, and logBclog_B c in terms of kk:

alogBa=a[k(bc)]=ka(bc)=k(abac)a log_B a = a [k(b-c)] = k a(b-c) = k(ab - ac)

blogBb=b[k(ca)]=kb(ca)=k(bcab)b log_B b = b [k(c-a)] = k b(c-a) = k(bc - ab)

clogBc=c[k(ab)]=kc(ab)=k(cacb)c log_B c = c [k(a-b)] = k c(a-b) = k(ca - cb)

Now, sum these three terms:

alogBa+blogBb+clogBc=k(abac)+k(bcab)+k(cacb)a log_B a + b log_B b + c log_B c = k(ab - ac) + k(bc - ab) + k(ca - cb)

Factor out kk:

alogBa+blogBb+clogBc=k[(abac)+(bcab)+(cacb)]a log_B a + b log_B b + c log_B c = k[(ab - ac) + (bc - ab) + (ca - cb)]

alogBa+blogBb+clogBc=k[abac+bcab+cacb]a log_B a + b log_B b + c log_B c = k[ab - ac + bc - ab + ca - cb]

The terms inside the square brackets cancel out:

abab=0ab - ab = 0

ac+ca=0-ac + ca = 0

bccb=0bc - cb = 0

So, the sum is 0.

alogBa+blogBb+clogBc=k[0]=0a log_B a + b log_B b + c log_B c = k[0] = 0

Thus, we have logB(aa.bb.cc)=0log_B(a^a.b^b.c^c) = 0.
For the logarithm of a number to be 0 (with a valid base B>0,B1B > 0, B \neq 1), the number must be 1.

aa.bb.cc=B0=1a^a.b^b.c^c = B^0 = 1.

Therefore, aa.bb.cc=1a^a.b^b.c^c=1.

Alternatively, using the property of equal ratios:

If x1y1=x2y2=x3y3=k\frac{x_1}{y_1} = \frac{x_2}{y_2} = \frac{x_3}{y_3} = k, then lx1+mx2+nx3ly1+my2+ny3=k\frac{lx_1+mx_2+nx_3}{ly_1+my_2+ny_3} = k for any multipliers l,m,nl, m, n.

Here, x1=logax_1=loga, y1=bcy_1=b-c, x2=logbx_2=logb, y2=cay_2=c-a, x3=logcx_3=logc, y3=aby_3=a-b.

Let's choose l=al=a, m=bm=b, n=cn=c.

Then k=a(loga)+b(logb)+c(logc)a(bc)+b(ca)+c(ab)k = \frac{a(loga) + b(logb) + c(logc)}{a(b-c) + b(c-a) + c(a-b)}.

The denominator is a(bc)+b(ca)+c(ab)=abac+bcab+cacb=0a(b-c) + b(c-a) + c(a-b) = ab - ac + bc - ab + ca - cb = 0.

So, k=aloga+blogb+clogc0k = \frac{a loga + b logb + c logc}{0}.

For kk to be a finite value (which is implied by the given condition for distinct a,b,ca, b, c), the numerator must be zero.

aloga+blogb+clogc=0a loga + b logb + c logc = 0.

Using logarithm properties, this is log(aa)+log(bb)+log(cc)=log(aabbcc)=0log(a^a) + log(b^b) + log(c^c) = log(a^a b^b c^c) = 0.

Let the base be BB. logB(aabbcc)=0log_B(a^a b^b c^c) = 0.

This implies aabbcc=B0=1a^a b^b c^c = B^0 = 1.