Solveeit Logo

Question

Question: E-4. (log₂10) . (log₂80) - (log₂5) . (log₂160) is equal to :...

E-4. (log₂10) . (log₂80) - (log₂5) . (log₂160) is equal to :

A

log₂5

B

log₂20

C

log₂10

Answer

The expression evaluates to 4, which is equivalent to log₂16. None of the provided options match this result.

Explanation

Solution

Let the given expression be EE. E=(log210)(log280)(log25)(log2160)E = (\log₂10) \cdot (\log₂80) - (\log₂5) \cdot (\log₂160)

We use the properties of logarithms: logb(xy)=logbx+logby\log_b(xy) = \log_b x + \log_b y and logbbn=n\log_b b^n = n. Let's express the numbers inside the logarithms in terms of powers of 2 and 5. 10=2×510 = 2 \times 5 80=16×5=24×580 = 16 \times 5 = 2^4 \times 5 160=32×5=25×5160 = 32 \times 5 = 2^5 \times 5

Now, let's express each logarithmic term: log210=log2(2×5)=log22+log25=1+log25\log₂10 = \log₂(2 \times 5) = \log₂2 + \log₂5 = 1 + \log₂5 log280=log2(24×5)=log224+log25=4log22+log25=4+log25\log₂80 = \log₂(2^4 \times 5) = \log₂2^4 + \log₂5 = 4 \log₂2 + \log₂5 = 4 + \log₂5 log25=log25\log₂5 = \log₂5 log2160=log2(25×5)=log225+log25=5log22+log25=5+log25\log₂160 = \log₂(2^5 \times 5) = \log₂2^5 + \log₂5 = 5 \log₂2 + \log₂5 = 5 + \log₂5

Let x=log25x = \log₂5. Substitute these expressions into the given expression EE: E=(1+x)(4+x)(x)(5+x)E = (1 + x)(4 + x) - (x)(5 + x)

Now, expand and simplify the expression: E=(1×4+1×x+x×4+x×x)(x×5+x×x)E = (1 \times 4 + 1 \times x + x \times 4 + x \times x) - (x \times 5 + x \times x) E=(4+x+4x+x2)(5x+x2)E = (4 + x + 4x + x^2) - (5x + x^2) E=(4+5x+x2)(5x+x2)E = (4 + 5x + x^2) - (5x + x^2) E=4+5x+x25xx2E = 4 + 5x + x^2 - 5x - x^2 E=4E = 4

The value of the expression is 4. This is equivalent to log216\log₂16.