Solveeit Logo

Question

Question: dy/dx - 3ycotx = sin2x...

dy/dx - 3ycotx = sin2x

Answer

The general solution to the differential equation is: y=2sin2x+Csin3xy = -2\sin^2 x + C\sin^3 x

Explanation

Solution

The given differential equation is: dydx3ycotx=sin2x\frac{dy}{dx} - 3y\cot x = \sin 2x This is a first-order linear differential equation of the form dydx+P(x)y=Q(x)\frac{dy}{dx} + P(x)y = Q(x). Here, P(x)=3cotxP(x) = -3\cot x and Q(x)=sin2xQ(x) = \sin 2x. The integrating factor (I.F.) is eP(x)dxe^{\int P(x) dx}. P(x)dx=3cotxdx=3lnsinx=ln(sin3x)\int P(x) dx = \int -3\cot x dx = -3\ln|\sin x| = \ln(\sin^{-3} x) I.F.=eln(sin3x)=sin3x=csc3xI.F. = e^{\ln(\sin^{-3} x)} = \sin^{-3} x = \csc^3 x The general solution is y×(I.F.)=Q(x)×(I.F.)dx+Cy \times (I.F.) = \int Q(x) \times (I.F.) dx + C. ycsc3x=sin2xcsc3xdx+Cy \csc^3 x = \int \sin 2x \csc^3 x dx + C The integral is evaluated as: sin2xcsc3xdx=(2sinxcosx)csc3xdx=2cosxsin2xdx\int \sin 2x \csc^3 x dx = \int (2\sin x \cos x) \csc^3 x dx = \int \frac{2\cos x}{\sin^2 x} dx Using substitution u=sinxu = \sin x, du=cosxdxdu = \cos x dx: 2u2du=2u1=2cscx\int 2u^{-2} du = -2u^{-1} = -2\csc x Thus, the solution becomes: ycsc3x=2cscx+Cy \csc^3 x = -2\csc x + C Solving for yy: y=(2cscx+C)sin3x=2sin2x+Csin3xy = (-2\csc x + C)\sin^3 x = -2\sin^2 x + C\sin^3 x