Question
Question: dy/dx - 3ycotx = sin2x...
dy/dx - 3ycotx = sin2x
Answer
The general solution to the differential equation is: y=−2sin2x+Csin3x
Explanation
Solution
The given differential equation is: dxdy−3ycotx=sin2x This is a first-order linear differential equation of the form dxdy+P(x)y=Q(x). Here, P(x)=−3cotx and Q(x)=sin2x. The integrating factor (I.F.) is e∫P(x)dx. ∫P(x)dx=∫−3cotxdx=−3ln∣sinx∣=ln(sin−3x) I.F.=eln(sin−3x)=sin−3x=csc3x The general solution is y×(I.F.)=∫Q(x)×(I.F.)dx+C. ycsc3x=∫sin2xcsc3xdx+C The integral is evaluated as: ∫sin2xcsc3xdx=∫(2sinxcosx)csc3xdx=∫sin2x2cosxdx Using substitution u=sinx, du=cosxdx: ∫2u−2du=−2u−1=−2cscx Thus, the solution becomes: ycsc3x=−2cscx+C Solving for y: y=(−2cscx+C)sin3x=−2sin2x+Csin3x