Solveeit Logo

Question

Question: ∫(dx/1-cos2x)...

∫(dx/1-cos2x)

Answer

-(1/2)cot(x) + C

Explanation

Solution

To solve the integral dx1cos2x\int \frac{dx}{1-\cos2x}, we use trigonometric identities to simplify the integrand.

The key identity is cos2x=12sin2x\cos2x = 1 - 2\sin^2x. From this, we can express 1cos2x1-\cos2x: 1cos2x=1(12sin2x)1 - \cos2x = 1 - (1 - 2\sin^2x) 1cos2x=11+2sin2x1 - \cos2x = 1 - 1 + 2\sin^2x 1cos2x=2sin2x1 - \cos2x = 2\sin^2x

Now, substitute this into the integral: dx1cos2x=dx2sin2x\int \frac{dx}{1-\cos2x} = \int \frac{dx}{2\sin^2x} We can take the constant 12\frac{1}{2} out of the integral: =121sin2xdx= \frac{1}{2} \int \frac{1}{\sin^2x} dx We know that 1sinx=cscx\frac{1}{\sin x} = \csc x, so 1sin2x=csc2x\frac{1}{\sin^2x} = \csc^2x: =12csc2xdx= \frac{1}{2} \int \csc^2x dx The standard integral of csc2x\csc^2x is cotx-\cot x: =12(cotx)+C= \frac{1}{2} (-\cot x) + C =12cotx+C= -\frac{1}{2} \cot x + C where CC is the constant of integration.