Solveeit Logo

Question

Question: Due to rotation of the earth the direction of vertical at a place is not along the radius of the ear...

Due to rotation of the earth the direction of vertical at a place is not along the radius of the earth and actually makes a small angle ϕ\phi with the true vertical (i.e. with radius). At hat latitude Θ\Theta is this angle ϕ\phi maximum?

A

0

B

30

C

45

D

60

Answer

45^\circ

Explanation

Solution

The effective acceleration due to gravity (geff\vec{g}_{eff}) at a latitude Θ\Theta is the vector sum of the true gravitational acceleration (g0\vec{g}_0, directed towards the Earth's center) and the centrifugal acceleration (ac\vec{a}_c, directed outwards from the axis of rotation).

The true vertical is along the direction of g0\vec{g}_0. The apparent vertical is along the direction of geff\vec{g}_{eff}. The angle ϕ\phi is between these two directions.

Let's resolve geff\vec{g}_{eff} into components along the true vertical and true horizontal.

  1. True Gravitational Acceleration (g0\vec{g}_0): Acts radially inwards, magnitude g0g_0.

  2. Centrifugal Acceleration (ac\vec{a}_c): Magnitude ac=ω2RcosΘa_c = \omega^2 R \cos\Theta, where RR is Earth's radius and ω\omega is its angular velocity. This force acts outwards from the axis of rotation.

    • The component of ac\vec{a}_c along the true horizontal (tangent to the surface, towards the equator) is geff,H=acsinΘ=ω2RcosΘsinΘg_{eff,H} = a_c \sin\Theta = \omega^2 R \cos\Theta \sin\Theta.
    • The component of ac\vec{a}_c along the true vertical (radially outwards) is accosΘ=ω2Rcos2Θa_c \cos\Theta = \omega^2 R \cos^2\Theta. This component acts opposite to g0\vec{g}_0.

The effective components of acceleration are:

  • Horizontal component: geff,H=ω2RsinΘcosΘg_{eff,H} = \omega^2 R \sin\Theta \cos\Theta.
  • Vertical component: geff,V=g0ω2Rcos2Θg_{eff,V} = g_0 - \omega^2 R \cos^2\Theta.

The angle ϕ\phi between the apparent vertical and the true vertical is given by:

tanϕ=geff,Hgeff,V=ω2RsinΘcosΘg0ω2Rcos2Θ\tan\phi = \frac{g_{eff,H}}{g_{eff,V}} = \frac{\omega^2 R \sin\Theta \cos\Theta}{g_0 - \omega^2 R \cos^2\Theta}

To find the latitude Θ\Theta where ϕ\phi (and thus tanϕ\tan\phi) is maximum, we differentiate this expression with respect to Θ\Theta and set it to zero.

Let K=ω2Rg0K = \frac{\omega^2 R}{g_0}. Since g0ω2Rg_0 \gg \omega^2 R, KK is a small quantity.

tanϕ=KsinΘcosΘ1Kcos2Θ=K2sin(2Θ)1Kcos2Θ\tan\phi = \frac{K \sin\Theta \cos\Theta}{1 - K \cos^2\Theta} = \frac{\frac{K}{2} \sin(2\Theta)}{1 - K \cos^2\Theta}

Differentiating and setting the derivative to zero (ignoring the denominator which is never zero):

ddΘ(K2sin(2Θ))(1Kcos2Θ)K2sin(2Θ)ddΘ(1Kcos2Θ)=0\frac{d}{d\Theta}\left(\frac{K}{2} \sin(2\Theta)\right)(1 - K \cos^2\Theta) - \frac{K}{2} \sin(2\Theta) \frac{d}{d\Theta}(1 - K \cos^2\Theta) = 0 Kcos(2Θ)(1Kcos2Θ)K2sin(2Θ)(K2cosΘ(sinΘ))=0K\cos(2\Theta)(1 - K \cos^2\Theta) - \frac{K}{2} \sin(2\Theta) (-K \cdot 2\cos\Theta (-\sin\Theta)) = 0 Kcos(2Θ)(1Kcos2Θ)K2sin(2Θ)sinΘcosΘ=0K\cos(2\Theta)(1 - K \cos^2\Theta) - K^2 \sin(2\Theta) \sin\Theta \cos\Theta = 0

Divide by KK (since K0K \ne 0):

cos(2Θ)(1Kcos2Θ)Ksin(2Θ)sinΘcosΘ=0\cos(2\Theta)(1 - K \cos^2\Theta) - K \sin(2\Theta) \sin\Theta \cos\Theta = 0

Substitute sin(2Θ)=2sinΘcosΘ\sin(2\Theta) = 2\sin\Theta \cos\Theta:

cos(2Θ)(1Kcos2Θ)K(2sinΘcosΘ)sinΘcosΘ=0\cos(2\Theta)(1 - K \cos^2\Theta) - K (2\sin\Theta \cos\Theta) \sin\Theta \cos\Theta = 0 cos(2Θ)(1Kcos2Θ)2Ksin2Θcos2Θ=0\cos(2\Theta)(1 - K \cos^2\Theta) - 2K \sin^2\Theta \cos^2\Theta = 0

Substitute cos(2Θ)=2cos2Θ1\cos(2\Theta) = 2\cos^2\Theta - 1 and sin2Θ=1cos2Θ\sin^2\Theta = 1 - \cos^2\Theta:

(2cos2Θ1)(1Kcos2Θ)2K(1cos2Θ)cos2Θ=0(2\cos^2\Theta - 1)(1 - K \cos^2\Theta) - 2K (1 - \cos^2\Theta)\cos^2\Theta = 0

Let c2=cos2Θc^2 = \cos^2\Theta.

(2c21)(1Kc2)2K(1c2)c2=0(2c^2 - 1)(1 - Kc^2) - 2K (1 - c^2)c^2 = 0 2c22Kc41+Kc22Kc2+2Kc4=02c^2 - 2Kc^4 - 1 + Kc^2 - 2Kc^2 + 2Kc^4 = 0 (2+K2K)c21=0(2+K-2K)c^2 - 1 = 0 (2K)c21=0(2-K)c^2 - 1 = 0 c2=12Kc^2 = \frac{1}{2-K}

Since K=ω2Rg0K = \frac{\omega^2 R}{g_0} is very small (K0.00345K \approx 0.00345), we can approximate 2K22-K \approx 2.

cos2Θ12\cos^2\Theta \approx \frac{1}{2} cosΘ=12\cos\Theta = \frac{1}{\sqrt{2}}

This implies Θ=45\Theta = 45^\circ.

The angle ϕ\phi is maximum at a latitude of 4545^\circ.