Solveeit Logo

Question

Question: DRG of $\tan^{-1}\tan x^2$ when $x \in [-1,2]$...

DRG of tan1tanx2\tan^{-1}\tan x^2 when x[1,2]x \in [-1,2]

Answer
  • Domain: {x[1,2]xπ/2}\{ x\in[-1,2] \mid x\neq \sqrt{\pi/2} \}

  • Range: (π2,π2)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)

  • Graph:

    • For x<π/2|x|<\sqrt{\pi/2}: y=x2y=x^2.
    • For x(π/2,2]x\in(\sqrt{\pi/2},2]: y=x2πy=x^2-\pi,

    with a discontinuity (hole) at x=π/2x=\sqrt{\pi/2}.

Explanation

Solution

We wish to simplify

y=tan1(tan(x2))y=\tan^{-1}(\tan(x^2))

for x[1,2]x\in[-1,2]. Recall that tan1\tan^{-1} (or arctan\arctan) returns the unique value in its principal range (π2,π2)\left(-\frac{\pi}{2},\frac{\pi}{2}\right). Thus, for any real number θ\theta,

tan1(tanθ)=θkπ,\tan^{-1}(\tan \theta)=\theta-k\pi,

where kk is an integer chosen so that

θkπ(π2,π2).\theta-k\pi\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right).

Since

θ=x2,\theta=x^2,

and noting that for x[1,2]x\in[-1,2]

x2[0,4],x^2\in [0,4],

we separate the analysis into cases.

1. When is x2x^2 in the principal interval?

We need

x2(π2,π2).x^2\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right).

Since x20x^2\ge0, this becomes

x2[0,π2).x^2\in\left[0,\frac{\pi}{2}\right).

In this case, no adjustment is needed and

y=x2.y=x^2.

2. When is x2x^2 outside the interval (π2,π2)\left(-\frac{\pi}{2},\frac{\pi}{2}\right)?

For x2[π2,4]x^2\in \left[\frac{\pi}{2},4\right], we choose k=1k=1 (since x2<3π/2x^2<3\pi/2 for x24x^2\le4) so that

x2π(π2,π2).x^2-\pi\in\left(-\frac{\pi}{2},\frac{\pi}{2}\right).

Thus, for these xx,

y=x2π.y=x^2-\pi.

3. Domain issues from the definition of tan\tan

Remember that the function tan(x2)\tan(x^2) is not defined when

cos(x2)=0x2=π2+nπ(nZ).\cos(x^2)=0\quad\Longrightarrow\quad x^2=\frac{\pi}{2}+n\pi\quad (n\in\mathbb{Z}).

Within x2[0,4]x^2\in [0,4] the only problematic value is:

x2=π2x=±π2.x^2=\frac{\pi}{2}\quad\Longrightarrow\quad x=\pm\sqrt{\frac{\pi}{2}}.

Since x[1,2]x\in[-1,2] and π21.253\sqrt{\frac{\pi}{2}}\approx1.253, note that

π21.253[1,2].-\sqrt{\frac{\pi}{2}}\approx -1.253 \notin [-1,2].

Thus the only point to be removed is

x=π2.x=\sqrt{\frac{\pi}{2}}.

Final Answers

Domain:

{x[1,2]:xπ/2}.\{ x\in[-1,2]: x\neq \sqrt{\pi/2}\}.

Range:

Looking at the two pieces:

  • For x2[0,π2)x^2\in[0,\frac{\pi}{2}): y=x2y=x^2 covers [0,π2)[0,\frac{\pi}{2}).
  • For x2(π2,4]x^2\in\left(\frac{\pi}{2},4\right]: y=x2πy=x^2-\pi covers values from just above π2π=π2\frac{\pi}{2}-\pi=-\frac{\pi}{2} up to 4π4-\pi.

The union of these intervals is

(π2,π2).\left(-\frac{\pi}{2},\frac{\pi}{2}\right).

Graph:

The function is given piecewise by

  • For xx such that x2<π2x^2<\frac{\pi}{2} (i.e. x<π2 |x|<\sqrt{\frac{\pi}{2}}), y=x2.y=x^2.
  • For xx such that x2>π2x^2>\frac{\pi}{2} (i.e. for x(π2,2]x\in(\sqrt{\frac{\pi}{2}},2], and symmetrically for x[1,π2)x\in[-1, -\sqrt{\frac{\pi}{2}}) if such existed in the interval—but note π2[1,2]-\sqrt{\frac{\pi}{2}} \notin[-1,2]), y=x2π.y=x^2-\pi.

There is a jump discontinuity at x=π2x=\sqrt{\frac{\pi}{2}} where the function is not defined.

A rough schematic using mermaid:

Minimal Core Explanation

  1. For x2[0,π/2)x^2\in[0,\pi/2), tan1(tan(x2))=x2\tan^{-1}(\tan(x^2))=x^2.
  2. For x2(π/2,4]x^2\in(\pi/2, 4], choose k=1k=1 so that tan1(tan(x2))=x2π\tan^{-1}(\tan(x^2))=x^2-\pi.
  3. Exclude xx such that x2=π/2x^2=\pi/2 (i.e. x=π/2x=\sqrt{\pi/2}) because tan\tan is undefined there.
  4. The combined range from the two cases is (π2,π2)\left(-\frac{\pi}{2},\frac{\pi}{2}\right).