Solveeit Logo

Question

Question: Draw a rough sketch of the region \[\\{\left( x,y \right):{{y}^{2}}\le 3x,3{{x}^{2}}+3{{y}^{2}}\le 1...

Draw a rough sketch of the region (x,y):y23x,3x2+3y216\\{\left( x,y \right):{{y}^{2}}\le 3x,3{{x}^{2}}+3{{y}^{2}}\le 16\\} and find the area enclosed by the region using integration.

Explanation

Solution

Start by drawing the diagram of the situation given in the question. If you observe, you will see that the inequality y23x{{y}^{2}}\le 3x represents the region inside the parabola y2=3x{{y}^{2}}=3x and the inequality 3x2+3y2163{{x}^{2}}+3{{y}^{2}}\le 16 represents the area inside the circle with the center as the origin. So, to find the area use the method of definite integration. For limits of integration, find the x-coordinate of intersection of the boundaries of two regions represented by the inequalities given in the question. To make the question easier, just find the area of the region enclosed above the x-axis and double it to get the total area.

Complete step-by-step solution -
We know that the equation y2=3x{{y}^{2}}=3x represents a parabola with vertex at origin. So, the inequality y23x{{y}^{2}}\le 3x represents the region inside the parabola y2=3x{{y}^{2}}=3x . Also, the equation 3x2+3y2=163{{x}^{2}}+3{{y}^{2}}=16 represents a circle with centre at the origin. So, the inequality 3x2+3y2163{{x}^{2}}+3{{y}^{2}}\le 16 represents the area inside the circle with centre as the origin and radius 163\sqrt{\dfrac{16}{3}} .
Let us draw the representative figure of the situation given the question.

So, according to the question, we need to find the area of the region AOBD. We know that the given regions are symmetric about the x-axis, so to make the calculations easier, we will find the area above the x-axis, i.e., the area of the region AOD and double it to get the total area.
First, let us find the x-coordinates of the point A, which is the intersection of the curves y2=3x{{y}^{2}}=3x and 3x2+3y2=163{{x}^{2}}+3{{y}^{2}}=16 . so, let us substitute y2{{y}^{2}} from equation of parabola in the equation of circle, on doing so, we get
3x2+3y2=163{{x}^{2}}+3{{y}^{2}}=16
3x2+3×3x=16\Rightarrow 3{{x}^{2}}+3\times 3x=16
3x2+9x16=0\Rightarrow 3{{x}^{2}}+9x-16=0
As the above equation is a quadratic equation, we will use the quadratic formula, and as x is positive we will only consider the positive value of x.
x=b±b24ac2a=9±81+1922×3=9±2736x=\dfrac{-b\pm \sqrt{{{b}^{2}}-4ac}}{2a}=\dfrac{-9\pm \sqrt{81+192}}{2\times 3}=\dfrac{-9\pm \sqrt{273}}{6}
As the only positive value of x is to be considered, the x-coordinate of A is 9+2736\dfrac{-9+\sqrt{273}}{6} .
Also, the x-coordinate of point D is equal to the radius of the circle, i.e., 163\sqrt{\dfrac{16}{3}}.
Now, to find the area of the region AOD, we need to use the method of definite integration. The equations are y2=3xy=3x{{y}^{2}}=3x\Rightarrow y=\sqrt{3x} and 3x2+3y2=16y=163x233{{x}^{2}}+3{{y}^{2}}=16\Rightarrow y=\sqrt{\dfrac{16-3{{x}^{2}}}{3}}. We know that the area bounded by any general curve y=f(x), in region x=a to x=b is given by abf(x)dx\int\limits_{a}^{b}{f(x)dx} .
ar(AOD)=09+27363xdx+9+2736163163x23dxar\left( AOD \right)=\int\limits_{0}^{\dfrac{-9+\sqrt{273}}{6}}{\sqrt{3x}dx}+\int\limits_{\dfrac{-9+\sqrt{273}}{6}}^{\sqrt{\dfrac{16}{3}}}{\sqrt{\dfrac{16-3{{x}^{2}}}{3}}dx}
Now, we know that the integral of x\sqrt{x} is equal to 2x33\dfrac{2\sqrt{{{x}^{3}}}}{3} .
ar(AOD)=3×2x3309+2736+9+2736163(163)2x2dxar\left( AOD \right)=\sqrt{3}\times \left. \dfrac{2\sqrt{{{x}^{3}}}}{3} \right|_{0}^{\dfrac{-9+\sqrt{273}}{6}}+\int\limits_{\dfrac{-9+\sqrt{273}}{6}}^{\sqrt{\dfrac{16}{3}}}{\sqrt{{{\left( \sqrt{\dfrac{16}{3}} \right)}^{2}}-{{x}^{2}}}dx}
Now we know that a2x2dx=x2a2x2+a22sin1xa+c\int{\sqrt{{{a}^{2}}-{{x}^{2}}}dx=\dfrac{x}{2}\sqrt{{{a}^{2}}-{{x}^{2}}}}+\dfrac{{{a}^{2}}}{2}{{\sin }^{-1}}\dfrac{x}{a}+c.
ar(AOD)=3×2×(9+2736)33+(x2163x2+166sin13x16)9+2736163ar\left( AOD \right)=\sqrt{3}\times 2\times \dfrac{\sqrt{{{\left( \dfrac{-9+\sqrt{273}}{6} \right)}^{3}}}}{3}\left. +\left( \dfrac{x}{2}\sqrt{\dfrac{16}{3}-{{x}^{2}}}+\dfrac{16}{6}{{\sin }^{-1}}\dfrac{\sqrt{3}x}{\sqrt{16}} \right) \right|_{\dfrac{-9+\sqrt{273}}{6}}^{\sqrt{\dfrac{16}{3}}}

& \Rightarrow ar\left( AOD \right)=\sqrt{3}\times 2\times \dfrac{\sqrt{{{\left( \dfrac{-9+\sqrt{273}}{6} \right)}^{3}}}}{3}+\dfrac{16\times \pi }{6\times 2}- \\\ & \left( \left( \dfrac{-9+\sqrt{273}}{12} \right)\times \sqrt{\dfrac{16}{3}-{{\left( \dfrac{-9+\sqrt{273}}{6} \right)}^{2}}}+\dfrac{16}{6}{{\sin }^{-1}}\dfrac{\sqrt{3}\times \left( -9+\sqrt{273} \right)}{6\times \sqrt{16}} \right) \\\ \end{aligned}$$ $$\begin{aligned} & \Rightarrow ar\left( AOD \right)=\sqrt{3}\times 2\times \dfrac{\sqrt{{{\left( \dfrac{-9+\sqrt{273}}{6} \right)}^{3}}}}{3}+\dfrac{8\times \pi }{6}- \\\ & \left( \left( \dfrac{-9+\sqrt{273}}{12} \right)\times \sqrt{\dfrac{16}{3}-{{\left( \dfrac{-9+\sqrt{273}}{6} \right)}^{2}}}+\dfrac{16}{6}{{\sin }^{-1}}\dfrac{\sqrt{3}\times \left( -9+\sqrt{273} \right)}{24} \right) \\\ \end{aligned}$$ Therefore, the area of the region AOBD is equal to twice the area of region AOD. $$\begin{aligned} & \Rightarrow ar\left( AOBD \right)=4\times \sqrt{3}\times \dfrac{\sqrt{{{\left( \dfrac{-9+\sqrt{273}}{6} \right)}^{3}}}}{3}+\dfrac{16\times \pi }{6}- \\\ & 2\times \left( \left( \dfrac{-9+\sqrt{273}}{12} \right)\times \sqrt{\dfrac{16}{3}-{{\left( \dfrac{-9+\sqrt{273}}{6} \right)}^{2}}}+\dfrac{16}{6}{{\sin }^{-1}}\dfrac{\sqrt{3}\times \left( -9+\sqrt{273} \right)}{24} \right)\text{ uni}{{\text{t}}^{2}} \\\ \end{aligned}$$ Now if we put the approximate value of $$\dfrac{-9+\sqrt{273}}{6}$$ as 1.2, we get $$ar\left( AOBD \right)=4\times \sqrt{3}\times \dfrac{\sqrt{{{1.2}^{3}}}}{3}+\dfrac{16\times \pi }{6}-2\times \left( \left( \dfrac{1.2}{2} \right)\times \sqrt{\dfrac{16}{3}-{{1.2}^{2}}}+\dfrac{16}{6}{{\sin }^{-1}}\dfrac{\sqrt{3}\times 1.2}{4} \right)\text{ uni}{{\text{t}}^{2}}$$ $$\Rightarrow ar\left( AOBD \right)=\left( 3.04+8.37-2\times \left( 0.592+2.66{{\sin }^{-1}}(0.5) \right) \right)\text{ uni}{{\text{t}}^{2}}$$ $$\Rightarrow ar\left( AOBD \right)=\left( 3.04+8.37-2\times \left( 0.592+2.66\times \dfrac{\pi }{6} \right) \right)\text{ uni}{{\text{t}}^{2}}$$ $$\Rightarrow ar\left( AOBD \right)=\left( 3.04+8.97-2\times \left( 0.592+1.395 \right) \right)\text{ uni}{{\text{t}}^{2}}$$ $$\Rightarrow ar\left( AOBD \right)=8.036uni{{t}^{2}}$$ **Therefore, the approximate answer to the above question is 8.036 sq units.** **Note:** Learn the graphs of different standard functions, as in such questions, the most important part is the diagram and for drawing the diagram you need to know the curves. Also, be familiar with approximate values of roots of single-digit numbers, as they are used very often. Also, be careful about the calculation part, as the calculation part is very complex and approximation is required to reach an approximate value.