Solveeit Logo

Question

Question: Draw a rough sketch of the graph of the function \(y = 2\sqrt {1 - {x^2}} ,x \in \left[ {0,1} \right...

Draw a rough sketch of the graph of the function y=21x2,x[0,1]y = 2\sqrt {1 - {x^2}} ,x \in \left[ {0,1} \right] and evaluate the area enclosed between the curve and the x-axis.

Explanation

Solution

To solve this question, we will use the concept of application of integration. If the curve y=f(x)y = f\left( x \right) lies above the x-axis on interval [a,b]\left[ {a,b} \right], then the area bounded by the curve y=f(x)y = f\left( x \right), x-axis and the ordinates x = a and x = b is given by,
abf(x)dx=abf(x)dx=abydx\int\limits_a^b {\left| {f\left( x \right)} \right|} dx = \int\limits_a^b {f\left( x \right)} dx = \int\limits_a^b y dx [f(x)0 for all x[a,b]f(x)=f(x)]\left[ {\therefore f\left( x \right) \geqslant 0{\text{ for all }}x \in \left[ {a,b} \right]\therefore \left| {f\left( x \right)} \right| = f\left( x \right)} \right]

Complete step-by-step answer:

Given that,
y=21x2,x[0,1]y = 2\sqrt {1 - {x^2}} ,x \in \left[ {0,1} \right]
Let us simplify this equation of curve in a simple form,
y=21x2\Rightarrow y = 2\sqrt {1 - {x^2}} ……. (i)
Squaring both sides on equation (i),
y2=4(1x2)\Rightarrow {y^2} = 4\left( {1 - {x^2}} \right)
y24=1x2\Rightarrow \dfrac{{{y^2}}}{4} = 1 - {x^2}
x21+y24=1\Rightarrow \dfrac{{{x^2}}}{1} + \dfrac{{{y^2}}}{4} = 1
Here, we can see that this is the equation of an ellipse.
So,
y=21x2\Rightarrow y = 2\sqrt {1 - {x^2}} will represent the portion of the ellipse lying in the first quadrant.
So, the required area A enclosed between the curve and the x-axis is given by,
A=01ydx\Rightarrow A = \int\limits_0^1 y dx
Putting the value of y,
A=0121x2dx\Rightarrow A = \int\limits_0^1 {2\sqrt {1 - {x^2}} } dx ……… (ii)
As we know that,
a2x2dx=12xa2x2+a22sin1xa+C\int {\sqrt {{a^2} - {x^2}} } dx = \dfrac{1}{2}x\sqrt {{a^2} - {x^2}} + \dfrac{{{a^2}}}{2}{\sin ^{ - 1}}\dfrac{x}{a} + C
If we compare a2x2\sqrt {{a^2} - {x^2}} with 1x2\sqrt {1 - {x^2}} ,
We get a = 1.
So, the integration of equation (ii) will become,
A=2[12x1x2+12sin1x1]01\Rightarrow A = 2\left[ {\dfrac{1}{2}x\sqrt {1 - {x^2}} + \dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{x}{1}} \right]_0^1
A=2[(12(1)112+12sin111)(120102+12sin101)]\Rightarrow A = 2\left[ {\left( {\dfrac{1}{2}\left( 1 \right)\sqrt {1 - {1^2}} + \dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{1}{1}} \right) - \left( {\dfrac{1}{2}0\sqrt {1 - {0^2}} + \dfrac{1}{2}{{\sin }^{ - 1}}\dfrac{0}{1}} \right)} \right]
A=2[(0+12(π2))0]\Rightarrow A = 2\left[ {\left( {0 + \dfrac{1}{2}\left( {\dfrac{\pi }{2}} \right)} \right) - 0} \right]
A=2×π4\Rightarrow A = 2 \times \dfrac{\pi }{4}
A=π2\Rightarrow A = \dfrac{\pi }{2}sq. units.
Hence, the area enclosed between the curve and the x-axis will be π2\dfrac{\pi }{2} sq. units.

Note: Whenever we asked such type of questions, we should also remember that, If the curve y=f(x)y = f\left( x \right) lies below the x-axis on interval [a,b]\left[ {a,b} \right], then the area bounded by the curve y=f(x)y = f\left( x \right), x-axis and the ordinates x = a and x = b is given by,
abf(x)dx=abf(x)dx=abydx\int\limits_a^b {\left| {f\left( x \right)} \right|} dx = - \int\limits_a^b {f\left( x \right)} dx = - \int\limits_a^b y dx [f(x)0 for all x[a,b]f(x)=f(x)]\left[ {\therefore f\left( x \right) \leqslant 0{\text{ for all }}x \in \left[ {a,b} \right]\therefore \left| {f\left( x \right)} \right| = - f\left( x \right)} \right]