Solveeit Logo

Question

Mathematics Question on Slope of a line

Draw a quadrilateral in the Cartesian plane, whose vertices are (-4, 5), (0, 7), (5, -5) and (-4, -2). Also, find its area.

Answer

Let ABCD be the given quadrilateral with vertices A (-4, 5), B (0, 7), C (5,-5), and D (- 4, - 2).
Then, by plotting A, B, C, and D on the Cartesian plane and joining AB, BC, CD, and DA, the given quadrilateral can
be drawn as

quadrilateral in the Cartesian plane
To find the area of quadrilateral ABCD, we draw one diagonal, say AC.
Accordingly, area (ABCD) = area (ΔABC) + area (ΔACD)
We know that the area of a triangle whose vertices are (x1, y1), (x2, y2), and (x3, y3) is

12x1(y2y3)+x2(y3y1)+x3(y1y2)\frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|

Therefore, area of ΔABC

=124(7+5)+0(55)+5(57)unit2=\frac{1}{2}|-4(7+5)+0(-5-5)+5(5-7)|\, unit^2

=124(12)+5(2)unit2=\frac{1}{2}|-4(12)+5(-2)|\,\,unit^2

=124810unit2=\frac{1}{2}|-48-10|\,\,unit^2

=1258unit2=\frac{1}{2}|-58|\,\,unit^2

=12×58unit2=\frac{1}{2}×58\,\,unit^2

=29unit2=29\,\,unit^2

Area of ΔACD

=124(5+)+5(25)+5(4)(5+5)unit2=\frac{1}{2}|-4(-5+)+5(-2-5)+5(-4)(5+5)|\, unit^2

=124(3)+5(7)4unit2=\frac{1}{2}|-4(3)+5(-7)-4|\,\,unit^2

=12123540unit2=\frac{1}{2}|-12-35-40|\,\,unit^2

=1263unit2=\frac{1}{2}|-63|\,\,unit^2

=632unit2=\frac{63}{2}\,\,unit^2

Thus, area (ABCD) =(29+292)unit2=58+632unit21212unit2=(29+\frac{29}{2})\,unit^2\,=\frac{58+63}{2}\,unit^2\,\frac{121}{2}\,unit^2